Skip to main content

Multi-threaded matrix multiplication and cosine similarity calculations.

Project description

ChunkDot

Multi-threaded matrix multiplication and cosine similarity calculations for dense and sparse matrices. Appropriate for calculating the K most similar items for a large number of items by chunking the item matrix representation (embeddings) and using Numba to accelerate the calculations.

Use for:

Related blog posts

Usage

pip install -U chunkdot

Dense embeddings

Calculate the 50 most similar and dissimilar items for 100K items.

import numpy as np
from chunkdot import cosine_similarity_top_k

embeddings = np.random.randn(100000, 256)
# using all you system's memory
cosine_similarity_top_k(embeddings, top_k=50)
# most dissimilar items using 20GB
cosine_similarity_top_k(embeddings, top_k=-50, max_memory=20E9)
<100000x100000 sparse matrix of type '<class 'numpy.float64'>'
 with 5000000 stored elements in Compressed Sparse Row format>
# with progress bar
cosine_similarity_top_k(embeddings, top_k=50, show_progress=True)
100%|███████████████████████████████████████████████████████████████| 129.0/129 [01:04<00:00,  1.80it/s]
<100000x100000 sparse matrix of type '<class 'numpy.float64'>'
  with 5000000 stored elements in Compressed Sparse Row format>

Execution time

from timeit import timeit
import numpy as np
from chunkdot import cosine_similarity_top_k

embeddings = np.random.randn(100000, 256)
timeit(lambda: cosine_similarity_top_k(embeddings, top_k=50, max_memory=20E9), number=1)
58.611996899999994

Sparse embeddings

Calculate the 50 most similar and dissimilar items for 100K items. Items represented by 10K dimensional vectors and an embeddings matrix of 0.005 density.

from scipy import sparse
from chunkdot import cosine_similarity_top_k

embeddings = sparse.rand(100000, 10000, density=0.005)
# using all you system's memory
cosine_similarity_top_k(embeddings, top_k=50)
# most dissimilar items using 20GB
cosine_similarity_top_k(embeddings, top_k=-50, max_memory=20E9)
<100000x100000 sparse matrix of type '<class 'numpy.float64'>'
 with 5000000 stored elements in Compressed Sparse Row format>

Execution time

from timeit import timeit
from scipy import sparse
from chunkdot import cosine_similarity_top_k

embeddings = sparse.rand(100000, 10000, density=0.005)
timeit(lambda: cosine_similarity_top_k(embeddings, top_k=50, max_memory=20E9), number=1)
51.87472256699999

Similarity calculation versus other embeddings

Given 20K items, for each item, find the 50 most similar items in a collection of other 10K items.

import numpy as np
from chunkdot import cosine_similarity_top_k

embeddings = np.random.randn(20000, 256)
other_embeddings = np.random.randn(10000, 256)

cosine_similarity_top_k(embeddings, embeddings_right=other_embeddings, top_k=10)
<20000x10000 sparse matrix of type '<class 'numpy.float64'>'
 with 200000 stored elements in Compressed Sparse Row format>

CosineSimilarityTopK scikit-learn transformer

Given a pandas DataFrame with 100K rows and

  • 2 numerical columns
  • 2 categorical columns with 500 categories each

use scikit-learn transformers, the standard scaler for the numerical columns and the one-hot encoder for the categorical columns, to form an embeddings matrix of dimensions 100K x 1002 and then calculate the top 50 most similar rows per each row.

import numpy as np
import pandas as pd

n_rows = 100000
n_categories = 500
df = pd.DataFrame(
    {
        "A_numeric": np.random.rand(n_rows),
        "B_numeric": np.random.rand(n_rows),
        "C_categorical": np.random.randint(n_categories, size=n_rows),
        "D_categorical": np.random.randint(n_categories, size=n_rows),
    }
)
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler

from chunkdot import CosineSimilarityTopK

numeric_features = ["A_numeric", "B_numeric"]
numeric_transformer = Pipeline(steps=[("scaler", StandardScaler())])

categorical_features = ["C_categorical", "D_categorical"]
categorical_transformer = Pipeline(steps=[("encoder", OneHotEncoder())])

preprocessor = ColumnTransformer(
    transformers=[
        ("num", numeric_transformer, numeric_features),
        ("cat", categorical_transformer, categorical_features),
    ]
)

cos_sim = CosineSimilarityTopK(top_k=50)

pipe = Pipeline(steps=[("preprocessor", preprocessor), ("cos_sim", cos_sim)])
pipe.fit_transform(df)
<100000x100000 sparse matrix of type '<class 'numpy.float64'>'
	with 5000000 stored elements in Compressed Sparse Row format>

Execution time

from timeit import timeit

timeit(lambda: pipe.fit_transform(df), number=1)
24.45172154181637

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chunkdot-0.5.0.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

chunkdot-0.5.0-py3-none-any.whl (12.8 kB view details)

Uploaded Python 3

File details

Details for the file chunkdot-0.5.0.tar.gz.

File metadata

  • Download URL: chunkdot-0.5.0.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.11 Darwin/23.1.0

File hashes

Hashes for chunkdot-0.5.0.tar.gz
Algorithm Hash digest
SHA256 748b83ec2a6cd7596c95d207a07fa6254765878920ace50e4dca8c7d67bd91f2
MD5 969be00edb4a7ebae6eb0fc05e8f396f
BLAKE2b-256 2846aaa749d2abebbf009eb27ac100eb2c3fe933897bb2707f369026f3124387

See more details on using hashes here.

File details

Details for the file chunkdot-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: chunkdot-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.11 Darwin/23.1.0

File hashes

Hashes for chunkdot-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 56ca6603949aebc9c052e79a5dfad484e201a4fbb3a0670cdf23d08d975ebb75
MD5 1cc3e540d9034fbee579ba2e729858f9
BLAKE2b-256 2388c15fdc577b60dad8b84d7e35398440440a4ecfa0ee684a55f2ece0db5432

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page