Skip to main content

Computed Tomography to Finite Elements

Project description

ciclope

Computed Tomography to Finite Elements.

GitHub license PyPi Version PyPI pyversions Documentation Status

Micro Finite Element (microFE) models can be derived from micro Computed Tomography (microCT) 3D images to non-destructively assess mechanical properties of biological or artificial specimens.
ciclope provides fully open-source pipelines from microCT data preprocessing to microFE model generation, solution and postprocessing.

Installation

For mesh generation, ciclope requires pygalmesh, a Python frontend to CGAL. Follow the installation procedure for CGAL and Eigen. After that, install pygalmesh with pip or conda

conda install -c conda-forge pygalmesh

After installing pygalmesh, you can install ciclope using pip. The flag [all] will install optional dependencies needed to run full pipelines and examples.

pip install ciclope[all]

Some examples will require DXchange. You can install it with

conda install -c conda-forge dxchange

Testing

To verify your installation checkout this repository and run the tests with the command

cd test
python -m unittest -v test_ciclope.run_tests

How to contribute

If you want to contribute to this project, please install ciclope following the development guide.

Usage

ciclope pipelines can be run from the command line as a script. Scroll down and take a look at the Examples folder for this type of use. To view the command line script help run

ciclope -h

To use ciclope within python, import the package with

import ciclope

Image pre-processing

ciclope.utils contains functions that help you read and pre-process 3D datasets for FE model generation.

Read 3D CT dataset stored as stack of TIFFs

from ciclope.utils.recon_utils import read_tiff_stack

input_file = './test_data/LHDL/3155_D_4_bc/cropped/3155_D_4_bc_0000.tif'

data_3D = read_tiff_stack(input_file)
vs = np.ones(3) * 0.06  # voxelsize [mm]

read_tiff_stack reads all TIFF files (slices) contained in the input_file folder. The volume is stored in a 3D numpy.ndarray with size [slices, rows, columns].


Segment and remove unconnected voxels

from skimage import morphology
from ciclope.utils.preprocess import remove_unconnected

BW = data_3D > 142 # fixed global threshold
BW = morphology.closing(BW, morphology.ball(2)) # optional step
L = remove_unconnected(BW)

Mesh and FE model generation

If you already have a mesh file, you can skip the mesh generation steps and use ciclope with 3D meshio objects.

voxel-FE

Generate unstructured grid mesh of hexahedra (voxels)

import ciclope
mesh = ciclope.core.voxelFE.vol2ugrid(data_3D, vs)

Generate CalculiX input file .INP for voxel-FE model of linear elastic compression test

input_template = "./input_templates/tmp_example01_comp_static_bone.inp"
ciclope.core.voxelFE.mesh2voxelfe(mesh, input_template, 'foo.inp', keywords=['NSET', 'ELSET'])

tetrahedra-FE

Generate mesh of tetrahedra. ciclope uses pygalmesh for tetrahedra mesh generation

mesh = ciclope.core.tetraFE.cgal_mesh(L, vs, 'tetra', max_facet_distance=0.2, max_cell_circumradius=0.1)

Generate CalculiX input file .INP for tetrahedra-FE model of non-linear tensile test

input_template = "./input_templates/tmp_example02_tens_static_steel.inp"
ciclope.core.tetraFE.mesh2tetrafe(mesh, input_template, 'foo.inp', keywords=['NSET', 'ELSET'])

Postprocessing

ciclope.utils.postprocess.paraviewplot calls ParaView to generate and save plots of a chosen model scalar field.

  • Add path to your ParaView installation with
import sys
sys.path.append('~/Applications/ParaView-5.9.0-RC1-MPI-Linux-Python3.8-64bit/lib/python3.8/site-packages')
  • Plot midplanes of the vertical displacement field UD3
ciclope.utils.postprocess.paraview_plot('test_data/tooth/results/Tooth_3_scaled_2.vtk', slicenormal="xyz",
                                        RepresentationType="Surface", Crinkle=True, ColorBy=['U', 'D2'], Roll=90,
                                        ImageResolution=[1024, 1024], TransparentBackground=True,
                                        colormap='Cool to Warm')
  • Plot midplanes of the Von Mises stress S_Mises
ciclope.utils.postprocess.paraview_plot("test_data/tooth/results/Tooth_3_scaled_2.vtk", slicenormal="xyz",
                                        RepresentationType="Surface", Crinkle=False, ColorBy="S_Mises", Roll=90,
                                        ImageResolution=[1024, 1024])

See the Jupyter Notebooks in the examples section for more examples of 3D data and results visualization.

ciclope pipeline

The following table shows a general pipeline for FE model generation from CT data that can be executed from the command line with the ciclope script:

# Step Description command line script flag
1. Load CT data
2. Pre-processing Gaussian smooth --smooth
Resize image -r
Add embedding (not implemented yet)
Add caps --caps
3. Segmentation Uses Otsu method if left empty -t
Remove unconnected voxels
4. Meshing Outer shell mesh of triangles --shell_mesh
Volume mesh of tetrahedra --vol_mesh
5. FE model generation Apply Boundary Conditions
Material mapping -m, --mapping
Voxel FE --voxelfe
Tetrahedra FE --tetrafe

Notes on ciclope

  • Tetrahedra meshes are generated with pygalmesh (a Python frontend to CGAL)
  • High-resolution surface meshes for visualization are generated with the PyMCubes module.
  • All mesh exports are performed with the meshio module.
  • ciclope handles the definition of material properties and FE analysis parameters (e.g. boundary conditions, simulation steps..) through separate template files. The folders material_properties and input_templates contain a library of template files that can be used to generate FE simulations.
    • Additional libraries of CalculiX examples and template files can be found here and here

Examples

Example 1: voxel-uFE model of trabecular bone; linear compression test Made withJupyter

The pipeline can be executed from the command line with:

ciclope test_data/LHDL/3155_D_4_bc/cropped/3155_D_4_bc_0000.tif test_data/LHDL/3155_D_4_bc/results/3155_D_4_bc_voxelFE.inp -vs 0.0195 0.0195 0.0195 -r 2 -t 63 --smooth 1 --voxelfe --template input_templates/tmp_example01_comp_static_bone.inp --verbose

The example shows how to:

  • Load and inspect microCT volume data
  • Apply Gaussian smooth
  • Resample the dataset
  • Segment the bone tissue
  • Remove unconnected clusters of voxels
  • Convert the 3D binary to a voxel-FE model for simulation in CalculX or Abaqus
    • Linear, static analysis; displacement-driven
    • Local material mapping (dataset Grey Values to bone Tissue Elastic Modulus)
  • Launch simulation in Calculix
  • Convert Calculix output to .VTK for visualization in Paraview
  • Visualize simulation results in Paraview

Example 2: tetrahedra-uFE model of trabecular bone; linear compression test Made withJupyter

The pipeline can be executed from the command line with:

ciclope test_data/LHDL/3155_D_4_bc/cropped/3155_D_4_bc_0000.tif test_data/LHDL/3155_D_4_bc/results/3155_D_4_bc.inp -vs 0.0195 0.0195 0.0195 -r 2 -t 63 --smooth 1 --tetrafe --max_facet_distance 0.025 --max_cell_circumradius 0.05 --vol_mesh --template input_templates/tmp_example01_comp_static_bone.inp

Example #3 - tetrahedra-FE model of embedded tooth; compression test; heterogeneous materials Made withJupyter

Example #4 - non-linear tetrahedra-FE model of stainless steel foam Made withJupyter

The pipeline can be executed from the command line with:

ciclope input.tif output.inp -vs 0.0065 0.0065 0.0065 --smooth -r 1.2 -t 90 --vol_mesh --tetrafe --template ./../input_templates/tmp_example02_tens_Nlgeom_steel.inp -v

The example shows how to:

  • Load and inspect synchrotron microCT volume data
  • Apply Gaussian smooth
  • Resample the dataset
  • Segment the steel
  • Remove unconnected clusters of voxels
  • Generate volume mesh of tetrahedra
  • Generate high-resolution mesh of triangles of the model outer shell (for visualization)
  • Convert the 3D binary to a tetrahedra-FE model for simulation in CalculX or Abaqus
  • Launch simulation in Calculix
  • Convert Calculix output to .VTK for visualization in Paraview
  • Visualize simulation results in Paraview

Acknowledgements

This project was partially developed during the Jupyter Community Workshop “Building the Jupyter Community in Musculoskeletal Imaging Research” sponsored by NUMFocus.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ciclope-1.3.5.tar.gz (46.5 kB view details)

Uploaded Source

Built Distribution

ciclope-1.3.5-py3-none-any.whl (32.9 kB view details)

Uploaded Python 3

File details

Details for the file ciclope-1.3.5.tar.gz.

File metadata

  • Download URL: ciclope-1.3.5.tar.gz
  • Upload date:
  • Size: 46.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.15

File hashes

Hashes for ciclope-1.3.5.tar.gz
Algorithm Hash digest
SHA256 fe39f5e9111f30f7a42ceabb53f9f72096f88b11bf65b14707bd6cde58bc00e9
MD5 8dc4c9897bdc79922c023bbf67ee593c
BLAKE2b-256 a9802ac0ec59a26ea20d3f2da11ca46879e1e2cc1937e1eb4775234c461be33e

See more details on using hashes here.

File details

Details for the file ciclope-1.3.5-py3-none-any.whl.

File metadata

  • Download URL: ciclope-1.3.5-py3-none-any.whl
  • Upload date:
  • Size: 32.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.15

File hashes

Hashes for ciclope-1.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 70d3d2175122fd2b36882c6d4b6cedeb102e5a4e519b2e9eec0bf20ceccc8524
MD5 232f136ccb436a5a873bb51529c34acc
BLAKE2b-256 b8d1bf51d9b7e8ccdda0753246e7d7f1e3810e5477c2140db2f8a1296261fd6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page