Skip to main content

This is a pre-release.

Project description

drawing

cimcb

cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.

Installation

Dependencies

cimcb requires:

  • Python (>=3.5)
  • Bokeh (>=1.0.0)
  • Keras
  • NumPy (>=1.12)
  • SciPy
  • scikit-learn
  • Statsmodels
  • TensorFlow
  • tqdm

User installation

The recommend way to install cimcb and dependencies is to using conda:

conda install -c cimcb cimcb

or pip:

pip install cimcb

Alternatively, to install directly from github:

pip install https://github.com/KevinMMendez/cimcb/archive/master.zip

Tutorial

Open with Binders:

Binder

API

For futher detail on the usage refer to the docstring.

cimcb.model

  • PLS_SIMPLS: Partial least-squares regression using the SIMPLS algorithm.
  • PCR: Principal component regression.
  • PCLR: Principal component logistic regression.
  • RF: Random forest.
  • SVM: Support Vector Machine.
  • RBF_NN: Radial basis function neural network.
  • NN_LinearLinear: 2 Layer linear-linear neural network.
  • NN_LinearLogit: 2 Layer linear-logistic neural network.
  • NN_LogitLogit: 2 Layer logistic-logistic neural network.

cimcb.plot

  • boxplot: Creates a boxplot using Bokeh.
  • distribution: Creates a distribution plot using Bokeh.
  • pca: Creates a PCA scores and loadings plot using Bokeh.
  • permutation_test: Creates permutation test plots using Bokeh.
  • roc_plot: Creates a rocplot using Bokeh.
  • scatter: Creates a scatterplot using Bokeh.
  • scatterCI: Creates a scatterCI plot using Bokeh.

cimcb.cross_val

  • kfold: Exhaustitive search over param_dict calculating binary metrics.

cimcb.bootstrap

  • Perc: Returns bootstrap confidence intervals using the percentile boostrap interval.
  • BC: Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
  • BCA: Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.

cimcb.utils

  • binary_metrics: Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
  • ci95_ellipse: Construct a 95% confidence ellipse using PCA.
  • knnimpute: kNN missing value imputation using Euclidean distance.
  • load_dataXL: Loads and validates the DataFile and PeakFile from an excel file.
  • nested_getattr: getattr for nested attributes.
  • scale: Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
  • table_check: Error checking for DataTable and PeakTable (used in load_dataXL).
  • univariate_2class: Creates a table of univariate statistics (2 class).
  • wmean: Returns Weighted Mean. Ignores NaNs and handles infinite weights.

License

cimcb is licensed under the ___ license.

Authors

Correspondence

Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au

Citation

If you would cite cimcb in a scientific publication, you can use the following: ___

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cimcb-1.1.0.tar.gz (80.1 kB view details)

Uploaded Source

Built Distribution

cimcb-1.1.0-py3-none-any.whl (150.2 kB view details)

Uploaded Python 3

File details

Details for the file cimcb-1.1.0.tar.gz.

File metadata

  • Download URL: cimcb-1.1.0.tar.gz
  • Upload date:
  • Size: 80.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for cimcb-1.1.0.tar.gz
Algorithm Hash digest
SHA256 7077f3132cc07a0d00be45bf786357f218b1bc800c9fa9695dd2eafb55b89136
MD5 dcc975d4211178550d84d987e2ba79e5
BLAKE2b-256 0f481be2926978b5eecac0ae6c5427d8c9a20d8a07886659131d675e522d9bb3

See more details on using hashes here.

File details

Details for the file cimcb-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: cimcb-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 150.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for cimcb-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8fafefaefd750d0ea4d5760e09d89e3ebee8bd7cc5ae87e99bacd8cce6fa41f0
MD5 58a2367a8e4d7d4914bade6f4c9a5b03
BLAKE2b-256 04cadeb82d8022a6bef2160db63aa4ed75f2f63047cd8d850e0a3da78e4d0931

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page