This is a pre-release.
Project description
cimcb
cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.
Installation
Dependencies
cimcb requires:
- Python (>=3.5)
- Bokeh (>=1.0.0)
- Keras
- NumPy (>=1.12)
- SciPy
- scikit-learn
- Statsmodels
- TensorFlow
- tqdm
User installation
The recommend way to install cimcb and dependencies is to using conda
:
conda install -c cimcb cimcb
or pip
:
pip install cimcb
Alternatively, to install directly from github:
pip install https://github.com/KevinMMendez/cimcb/archive/master.zip
Tutorial
Open with Binders:
API
For futher detail on the usage refer to the docstring.
cimcb.model
- PLS_SIMPLS: Partial least-squares regression using the SIMPLS algorithm.
- PCR: Principal component regression.
- PCLR: Principal component logistic regression.
- RF: Random forest.
- SVM: Support Vector Machine.
- RBF_NN: Radial basis function neural network.
- NN_LinearLinear: 2 Layer linear-linear neural network.
- NN_LinearLogit: 2 Layer linear-logistic neural network.
- NN_LogitLogit: 2 Layer logistic-logistic neural network.
cimcb.plot
- boxplot: Creates a boxplot using Bokeh.
- distribution: Creates a distribution plot using Bokeh.
- pca: Creates a PCA scores and loadings plot using Bokeh.
- permutation_test: Creates permutation test plots using Bokeh.
- roc_plot: Creates a rocplot using Bokeh.
- scatter: Creates a scatterplot using Bokeh.
- scatterCI: Creates a scatterCI plot using Bokeh.
cimcb.cross_val
- kfold: Exhaustitive search over param_dict calculating binary metrics.
cimcb.bootstrap
- Perc: Returns bootstrap confidence intervals using the percentile boostrap interval.
- BC: Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
- BCA: Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.
cimcb.utils
- binary_metrics: Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
- ci95_ellipse: Construct a 95% confidence ellipse using PCA.
- knnimpute: kNN missing value imputation using Euclidean distance.
- load_dataXL: Loads and validates the DataFile and PeakFile from an excel file.
- nested_getattr: getattr for nested attributes.
- scale: Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
- table_check: Error checking for DataTable and PeakTable (used in load_dataXL).
- univariate_2class: Creates a table of univariate statistics (2 class).
- wmean: Returns Weighted Mean. Ignores NaNs and handles infinite weights.
License
cimcb is licensed under the ___ license.
Authors
- Kevin Mendez
- David Broadhurst
Correspondence
Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University. E-mail: d.broadhurst@ecu.edu.au
Citation
If you would cite cimcb in a scientific publication, you can use the following: ___
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cimcb-1.1.0.tar.gz
.
File metadata
- Download URL: cimcb-1.1.0.tar.gz
- Upload date:
- Size: 80.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7077f3132cc07a0d00be45bf786357f218b1bc800c9fa9695dd2eafb55b89136 |
|
MD5 | dcc975d4211178550d84d987e2ba79e5 |
|
BLAKE2b-256 | 0f481be2926978b5eecac0ae6c5427d8c9a20d8a07886659131d675e522d9bb3 |
File details
Details for the file cimcb-1.1.0-py3-none-any.whl
.
File metadata
- Download URL: cimcb-1.1.0-py3-none-any.whl
- Upload date:
- Size: 150.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fafefaefd750d0ea4d5760e09d89e3ebee8bd7cc5ae87e99bacd8cce6fa41f0 |
|
MD5 | 58a2367a8e4d7d4914bade6f4c9a5b03 |
|
BLAKE2b-256 | 04cadeb82d8022a6bef2160db63aa4ed75f2f63047cd8d850e0a3da78e4d0931 |