Skip to main content

A lite version of the cimcb package containing the necessary tools for the statistical analysis of untargeted and targeted metabolomics data.

Project description

drawing

cimcb lite

cimcb_lite is a lite version of the cimcb package containing a small number of basic tools for the statistical analysis of untargeted and targeted metabolomics data.

Installation

Dependencies

cimcb_lite requires:

  • Python (>=3.5)
  • Bokeh (>=1.0.0)
  • NumPy
  • SciPy
  • scikit-learn
  • Statsmodels
  • tqdm

User installation

The recommend way to install cimcb_lite and dependencies is to using conda:

conda install -c cimcb cimcb_lite

or pip:

pip install cimcb_lite

Alternatively, to install directly from github:

pip install https://github.com/cimcb/cimcb_lite/archive/master.zip

API

For futher detail on the usage refer to the docstring.

cimcb_lite.model

  • PLS_SIMPLS: Partial least-squares regression using the SIMPLS algorithm.
    • train: Fit the PLS model, save additional stats (as attributes) and return Y predicted values.
    • test: Calculate and return Y predicted value.
    • evaluate: Plots a figure containing a Violin plot, Distribution plot, ROC plot and Binary Metrics statistics.
    • calc_bootci: Calculates bootstrap confidence intervals based on bootlist.
    • plot_featureimportance: Plots feature importance metrics.
    • plot_permutation_test: Plots permutation test figures.

cimcb_lite.plot

  • boxplot: Creates a boxplot using Bokeh.
  • distribution: Creates a distribution plot using Bokeh.
  • pca: Creates a PCA scores and loadings plot using Bokeh.
  • permutation_test: Creates permutation test plots using Bokeh.
  • roc_plot: Creates a rocplot using Bokeh.
  • scatter: Creates a scatterplot using Bokeh.
  • scatterCI: Creates a scatterCI plot using Bokeh.

cimcb_lite.cross_val

  • kfold: Exhaustitive search over param_dict calculating binary metrics.

cimcb_lite.bootstrap

  • Perc: Returns bootstrap confidence intervals using the percentile boostrap interval.
  • BC: Returns bootstrap confidence intervals using the bias-corrected boostrap interval.
  • BCA: Returns bootstrap confidence intervals using the bias-corrected and accelerated boostrap interval.

cimcb_lite.utils

  • binary_metrics: Return a dict of binary stats with the following metrics: R2, auc, accuracy, precision, sensitivity, specificity, and F1 score.
  • ci95_ellipse: Construct a 95% confidence ellipse using PCA.
  • knnimpute: kNN missing value imputation using Euclidean distance.
  • load_dataXL: Loads and validates the DataFile and PeakFile from an excel file.
  • nested_getattr: getattr for nested attributes.
  • scale: Scales x (which can include nans) with method: 'auto', 'pareto', 'vast', or 'level'.
  • table_check: Error checking for DataTable and PeakTable (used in load_dataXL).
  • univariate_2class: Creates a table of univariate statistics (2 class).
  • wmean: Returns Weighted Mean. Ignores NaNs and handles infinite weights.

License

cimcb_lite is licensed under the MIT license.

Authors

Correspondence

Professor David Broadhurst, Director of the Centre for Integrative Metabolomics & Computation Biology at Edith Cowan University.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cimcb_lite-1.0.2.tar.gz (33.7 kB view details)

Uploaded Source

Built Distribution

cimcb_lite-1.0.2-py3-none-any.whl (47.6 kB view details)

Uploaded Python 3

File details

Details for the file cimcb_lite-1.0.2.tar.gz.

File metadata

  • Download URL: cimcb_lite-1.0.2.tar.gz
  • Upload date:
  • Size: 33.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for cimcb_lite-1.0.2.tar.gz
Algorithm Hash digest
SHA256 e571f113fbf3d9558330ed7928fd63b5ebe667574f2fb978c4da1e8b62c2a413
MD5 7d44b0a473fc3d3565ab49123d61dbf9
BLAKE2b-256 ffaba02de043255d367e4e7cf18834d3df2aa8220204c910f25cc6a8d482770d

See more details on using hashes here.

File details

Details for the file cimcb_lite-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: cimcb_lite-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 47.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.3

File hashes

Hashes for cimcb_lite-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 73ffd86af8c32905d1fde2ea16925f514236ecfc0d527172b9af0da71638cad5
MD5 c2f837060cee9cf0ab76cee1803d0697
BLAKE2b-256 ec8384f21b56b4f11f77ea9dc7787bc2cf2daf851e41329a3e8c6002ad33e2cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page