Skip to main content

Weighted KMeans Clustering for Geolocational Problem

Project description

Weighted KMeans Clustering for Geolocational Problem

Repo for weighted k means clustering for specifically geo locational problems.

For an example and mathematical explanation:

https://emrahcimren.github.io/data%20science/Greenfield-Analysis-with-Weighted-Clustering/

Prerequisites

Install environment.yml for prerequisites.

conda env create -f environment.yml

To recreate environment.yml

conda env export > environment.yml

To create requirements.txt from environment.yml

pip freeze > requirements.txt

Installation

pip install cimren-wkmeans-geo

Inputs

input_locations is a pandas dataframe with the following format.

LOCATION_NAME LATITUDE LONGITUDE WEIGHT VOLUME
LOC 0 -27.0065 170.583 1 10

number_of_clusters: Number of clusters to be created

minimum_elements_in_a_cluster: Minimum elements in a cluster

maximum_elements_in_a_cluster: Maximum elements in a cluster

maximum_volume_in_a_cluster: Maximum volume that can fit in a cluster; if set to None, then it is disabled

maximum_iteration: How many maximum number of steps the algorithm takes to stop if it does not find the solution

enable_minimum_maximum_elements_in_a_cluster: True/False to enable minimum and maximum cluster size

objective_range: Acceptable difference between objectives at each iteration

Data

Package has a sample data set

from wkmeans_geo.src import data
data.locations_test
data.number_of_clusters
data.minimum_elements_in_a_cluster
data.maximum_elements_in_a_cluster
data.maximum_volume_in_a_cluster
data.maximum_iteration
data.enable_minimum_maximum_elements_in_a_cluster
data.objective_range

How to use

from wkmeans_geo.src import data
from wkmeans_geo import wkmeans_clustering as wkc
clusters, locations_with_clusters = wkc.calculate_clusters(
                                       data.locations_test,
                                       data.number_of_clusters,
                                       data.minimum_elements_in_a_cluster,
                                       data.maximum_elements_in_a_cluster,
                                       data.maximum_volume_in_a_cluster,
                                       data.maximum_iteration,
                                       data.objective_range,
                                       data.enable_minimum_maximum_elements_in_a_cluster)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cimren-wkmeans-geo-1.3.4.tar.gz (7.6 kB view details)

Uploaded Source

Built Distribution

cimren_wkmeans_geo-1.3.4-py3-none-any.whl (8.7 kB view details)

Uploaded Python 3

File details

Details for the file cimren-wkmeans-geo-1.3.4.tar.gz.

File metadata

  • Download URL: cimren-wkmeans-geo-1.3.4.tar.gz
  • Upload date:
  • Size: 7.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for cimren-wkmeans-geo-1.3.4.tar.gz
Algorithm Hash digest
SHA256 5a161e5a663ff318fee58a421d052750f8755df3db5762e75966a009d4a99b60
MD5 9a949ca43c06adf5f9403df3c19899a1
BLAKE2b-256 e6653d6701455498cab21ec4848b42c9b925cca77ac1290fbb89da3499874d09

See more details on using hashes here.

File details

Details for the file cimren_wkmeans_geo-1.3.4-py3-none-any.whl.

File metadata

  • Download URL: cimren_wkmeans_geo-1.3.4-py3-none-any.whl
  • Upload date:
  • Size: 8.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for cimren_wkmeans_geo-1.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 1a4b50b25401609a9d978abd8bf6e37da2c478db2de0f50172fd176e79b0f472
MD5 77bcd321ea2b5b554d6b59608f39b9da
BLAKE2b-256 da35ec20a5eda60cf9743214fae5c66d241fc65c77fc3c53d0129e6a5e8b20f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page