Weighted KMeans Clustering for Geolocational Problem
Project description
Weighted KMeans Clustering for Geolocational Problem
Repo for weighted k means clustering for specifically geo locational problems.
For an example and mathematical explanation:
https://emrahcimren.github.io/data%20science/Greenfield-Analysis-with-Weighted-Clustering/
Prerequisites
Install environment.yml for prerequisites.
conda env create -f environment.yml
To recreate environment.yml
conda env export > environment.yml
To create requirements.txt from environment.yml
pip freeze > requirements.txt
Installation
pip install cimren-wkmeans-geo
Inputs
input_locations is a pandas dataframe with the following format.
LOCATION_NAME | LATITUDE | LONGITUDE | WEIGHT | VOLUME |
---|---|---|---|---|
LOC 0 | -27.0065 | 170.583 | 1 | 10 |
number_of_clusters: Number of clusters to be created
minimum_elements_in_a_cluster: Minimum elements in a cluster
maximum_elements_in_a_cluster: Maximum elements in a cluster
maximum_volume_in_a_cluster: Maximum volume that can fit in a cluster; if set to None, then it is disabled
maximum_iteration: How many maximum number of steps the algorithm takes to stop if it does not find the solution
enable_minimum_maximum_elements_in_a_cluster: True/False to enable minimum and maximum cluster size
objective_range: Acceptable difference between objectives at each iteration
Data
Package has a sample data set
from wkmeans_geo.src import data
data.locations_test
data.number_of_clusters
data.minimum_elements_in_a_cluster
data.maximum_elements_in_a_cluster
data.maximum_volume_in_a_cluster
data.maximum_iteration
data.enable_minimum_maximum_elements_in_a_cluster
data.objective_range
How to use
from wkmeans_geo.src import data
from wkmeans_geo import wkmeans_clustering as wkc
clusters, locations_with_clusters = wkc.calculate_clusters(
data.locations_test,
data.number_of_clusters,
data.minimum_elements_in_a_cluster,
data.maximum_elements_in_a_cluster,
data.maximum_volume_in_a_cluster,
data.maximum_iteration,
data.objective_range,
data.enable_minimum_maximum_elements_in_a_cluster)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cimren-wkmeans-geo-1.3.4.tar.gz
.
File metadata
- Download URL: cimren-wkmeans-geo-1.3.4.tar.gz
- Upload date:
- Size: 7.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a161e5a663ff318fee58a421d052750f8755df3db5762e75966a009d4a99b60 |
|
MD5 | 9a949ca43c06adf5f9403df3c19899a1 |
|
BLAKE2b-256 | e6653d6701455498cab21ec4848b42c9b925cca77ac1290fbb89da3499874d09 |
File details
Details for the file cimren_wkmeans_geo-1.3.4-py3-none-any.whl
.
File metadata
- Download URL: cimren_wkmeans_geo-1.3.4-py3-none-any.whl
- Upload date:
- Size: 8.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/45.2.0.post20200210 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a4b50b25401609a9d978abd8bf6e37da2c478db2de0f50172fd176e79b0f472 |
|
MD5 | 77bcd321ea2b5b554d6b59608f39b9da |
|
BLAKE2b-256 | da35ec20a5eda60cf9743214fae5c66d241fc65c77fc3c53d0129e6a5e8b20f3 |