Skip to main content

Scikit-Learn interface for CINET PyTorch siamese neural network

Project description

cinet

Scikit-Learn interface for CINET PyTorch siamese neural network.

DeepCINET is a deep "siamese" neural network architecture, where a contrastive loss function is used to learn feature weights that maximally discriminate relative response/target between valid pairs of training data. A hyper-parameter, delta, is used to define what a valid pair is by setting a minimum difference in response/target value for pairs to be included in model training, with the intuition that useful weights cannot be learned from samples that are too close together in response-space.

Concordance index is then used to assess rank accuracy. Concordance index was chosen because it is a non-parametric statistic that does not make assumptions on data distributon or homoscedasticity. It can detect non-linear, monotonic associations.

ECINET is a one-dimensional neural network, which makes it essentially a linear regression model with regularization. It is comparable to model architectures like ElasticNet. It can be used to assess if improved performance is delivered by the added complexity of DeepCINET.

Note, however, that siamese networks go hand-in-hand with few shot learning approaches. The idea is that features learned from large data in CINET can then be applied to learning done on smaller real-world data in a transfer learning approach.

An initial implementation, trained on gene set expression data from cancer cell lines and meant to predict drug sensitivity rank, is available on the BHKLab's public GitHub at https://github.com/bhklab/cinet.

Installation

$ pip3 install cinet

Usage

CINET can be used like any other Scikit-Learn model.

# Import CINET
from cinet import *

# Create a DeepCINET model
model = deepCINET()
# Or, create an ECINET model
model = ECINET()

# Standard Scikit-Learn syntax
model.fit(X,y)
model.predict(X)
model.score(X,y)

# You can use it with things like GridSearchCV easily
GridSearchCV(deepCINET(device='cpu', batch_size=2**12), param_grid, refit = True, verbose = 3,n_jobs=3)

Contributing

Interested in contributing? Check out the contributing guidelines. Please note that this project is released with a Code of Conduct. By contributing to this project, you agree to abide by its terms.

License

cinet was created by Kevin Tabatabaei and Christopher Eeles. It is licensed under the terms of the MIT license.

Credits

cinet was created with cookiecutter and the py-pkgs-cookiecutter template.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cinet-0.0.16.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

cinet-0.0.16-py3-none-any.whl (15.8 kB view details)

Uploaded Python 3

File details

Details for the file cinet-0.0.16.tar.gz.

File metadata

  • Download URL: cinet-0.0.16.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for cinet-0.0.16.tar.gz
Algorithm Hash digest
SHA256 8249ca6a2a4a99a99465c77e0778d9516f25bdf36a85c880a98c86e464a16fee
MD5 4c5606dc04060ce6272bb20c07786535
BLAKE2b-256 00a28a0e4b0bea6aa296b5872e87f0b02f610855b5f1c414717846eda7aa9e53

See more details on using hashes here.

File details

Details for the file cinet-0.0.16-py3-none-any.whl.

File metadata

  • Download URL: cinet-0.0.16-py3-none-any.whl
  • Upload date:
  • Size: 15.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.15

File hashes

Hashes for cinet-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 f9c6fde52f340b76932e659a777f0632c0e3d2490c9c27899121fdbe6008d5d6
MD5 1d0865c344ba3b0dfced2fe7e2b1fb34
BLAKE2b-256 cf5258c06a5cd08f9f2ac60cf43ca6d186b7f4a71ce7610448856d81f99aba1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page