Skip to main content

Cipher - Trading Strategy Backtesting Framework.

Project description

Cipher - Trading Strategy Backtesting Framework

Tests PyPI version Python Versions License: MIT

cipher

Documentation: https://cipher.nanvel.com

Features:

  • Well-structured, intuitive, and easily extensible design
  • Support for multiple concurrent trading sessions
  • Sophisticated exit strategies including trailing take profits
  • Multi-source data integration (exchanges, symbols, timeframes)
  • Clean separation between signal generation and handling
  • Simple execution - just run python my_strategy.py
  • Compatibility with Google Colab
  • Built-in visualization with finplot and mplfinance plotters

Usage

Set up a new strategies workspace and create your first strategy:

mkdir strategies
cd strategies
uv init
uv add 'cipher-bt[finplot,talib]'

uv run cipher init
uv run cipher new my_strategy
uv run python my_strategy.py

Complete EMA crossover strategy example:

import numpy as np
import talib

from cipher import Cipher, Session, Strategy


class EmaCrossoverStrategy(Strategy):
    def __init__(self, fast_ema_length=9, slow_ema_length=21, trend_ema_length=200):
        self.fast_ema_length = fast_ema_length
        self.slow_ema_length = slow_ema_length
        self.trend_ema_length = trend_ema_length

    def compose(self):
        df = self.datas.df
        df["fast_ema"] = talib.EMA(df["close"], timeperiod=self.fast_ema_length)
        df["slow_ema"] = talib.EMA(df["close"], timeperiod=self.slow_ema_length)
        df["trend_ema"] = talib.EMA(df["close"], timeperiod=self.trend_ema_length)

        df["difference"] = df["fast_ema"] - df["slow_ema"]

        # Signal columns must be boolean type
        df["entry"] = np.sign(df["difference"].shift(1)) != np.sign(df["difference"])

        df["max_6"] = df["high"].rolling(window=6).max()
        df["min_6"] = df["low"].rolling(window=6).min()

        return df

    def on_entry(self, row: dict, session: Session):
        if row["difference"] > 0 and row["close"] > row["trend_ema"]:
            # Open a new long position
            session.position += "0.01"
            session.stop_loss = row["min_6"]
            session.take_profit = row["close"] + 1.5 * (row["close"] - row["min_6"])

        elif row["difference"] < 0 and row["close"] < row["trend_ema"]:
            # Open a new short position
            session.position -= "0.01"
            session.stop_loss = row["max_6"]
            session.take_profit = row["close"] - 1.5 * (row["max_6"] - row["close"])

    # def on_<signal>(self, row: dict, session: Session) -> None:
    #     """Custom signal handler called for each active session.
    #     Adjust or close positions and modify brackets here."""
    #     # session.position = 1
    #     # session.position = base(1)  # equivalent to the above
    #     # session.position = '1'  # int, str, float are converted to Decimal
    #     # session.position = quote(100)  # position worth 100 quote asset
    #     # session.position += 1  # add to the position
    #     # session.position -= Decimal('1.25')  # reduce position by 1.25
    #     # session.position += percent(50)  # add 50% more to position
    #     # session.position *= 1.5  # equivalent to the above
    #     pass
    #
    # def on_take_profit(self, row: dict, session: Session) -> None:
    #     """Called when take profit is hit. Default action closes the position.
    #     Modify position and brackets here to continue the session."""
    #     session.position = 0
    #
    # def on_stop_loss(self, row: dict, session: Session) -> None:
    #     """Called when stop loss is hit. Default action closes the position.
    #     Modify position and brackets here to continue the session."""
    #     session.position = 0
    #
    # def on_stop(self, row: dict, session: Session) -> None:
    #     """Called for each active session when dataframe ends.
    #     Close open sessions here, otherwise they will be ignored."""
    #     session.position = 0


def main():
    cipher = Cipher()
    cipher.add_source("binance_spot_ohlc", symbol="BTCUSDT", interval="1h")
    cipher.set_strategy(EmaCrossoverStrategy())
    cipher.run(start_ts="2025-01-01", stop_ts="2025-04-01")
    cipher.set_commission("0.00075")
    print(cipher.sessions)
    print(cipher.stats)
    cipher.plot()


if __name__ == "__main__":
    main()

ema_crossover_plot

Development

brew install uv
uv sync --all-extras
source .venv/bin/activate

pytest tests
cipher --help

Disclaimer

This software is for educational purposes only. Do not risk money you cannot afford to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cipher_bt-0.6.8.tar.gz (22.1 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

cipher_bt-0.6.8-py3-none-any.whl (40.0 kB view details)

Uploaded Python 3

File details

Details for the file cipher_bt-0.6.8.tar.gz.

File metadata

  • Download URL: cipher_bt-0.6.8.tar.gz
  • Upload date:
  • Size: 22.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.17

File hashes

Hashes for cipher_bt-0.6.8.tar.gz
Algorithm Hash digest
SHA256 461e16c188f870cdb64ec6ec57cc8a52d2237ed0c1deb5cee36c0fbc56a61128
MD5 65193e9181cfab70729f18090291a26c
BLAKE2b-256 e2bd3bf2aea8af6ca15af5c1b7938d863e0ab264d53aed4a32b19165bd8a85c8

See more details on using hashes here.

File details

Details for the file cipher_bt-0.6.8-py3-none-any.whl.

File metadata

  • Download URL: cipher_bt-0.6.8-py3-none-any.whl
  • Upload date:
  • Size: 40.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.10.17

File hashes

Hashes for cipher_bt-0.6.8-py3-none-any.whl
Algorithm Hash digest
SHA256 ca1313060c593a3fb79a70296873c71edbf056e3c558e054953902c421c5b75d
MD5 249776cdd6cef1ba26aca6f1fe978038
BLAKE2b-256 e1f66064e80bdcd78036a15ad8087f9ea34b4e952f115ec88a52f80c4be0e272

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page