Skip to main content

Minimal native Python library for building and working with logical circuits.

Project description

Minimal native Python library for building and working with logical circuits.

PyPI version and link. Read the Docs documentation status. GitHub Actions status. Coveralls test coverage summary.

Package Installation and Usage

The package is available on PyPI:

python -m pip install circuit

The library can be imported in the usual way:

import circuit
from circuit import *

Examples

This library make it possible to programmatically construct logical circuits consisting of interconnected logic gates. The functions corresponding to individual logic gates are represented using the logical library. In the example below, a simple conjunction circuit is constructed, and its input and output gates (corresponding to the logical unary identity function) are created and designated as such:

>>> from circuit import circuit, op
>>> c = circuit()
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.and_, [g0, g1])
>>> g3 = c.gate(op.id_, [g2], is_output=True)
>>> c.count() # Number of gates in the circuit.
4

The circuit accepts two input bits (represented as integers) and can be evaluated on any list of two bits using the evaluate method. The result is a bit vector that includes one bit for each output gate:

>>> c.evaluate([0, 1])
[0]
>>> [list(c.evaluate(bs)) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[0], [0], [0], [1]]

Note that the order of the output bits corresponds to the order in which the output gates were originally introduced using the gate method. It is possible to specify the signature of a circuit (i.e., the organization of input gates and output gates into distinct bit vectors of specific lengths) at the time the circuit object is created:

>>> from circuit import signature
>>> c = circuit(signature([2], [1]))
>>> g0 = c.gate(op.id_, is_input=True)
>>> g1 = c.gate(op.id_, is_input=True)
>>> g2 = c.gate(op.not_, [g0])
>>> g3 = c.gate(op.not_, [g1])
>>> g4 = c.gate(op.xor_, [g2, g3])
>>> g5 = c.gate(op.not_, [g4])
>>> g6 = c.gate(op.id_, [g4], is_output=True)
>>> [list(c.evaluate([bs])) for bs in [[0, 0], [0, 1], [1, 0], [1, 1]]]
[[[0]], [[1]], [[1]], [[0]]]

It is also possible to remove all internal gates from which an output gate cannot be reached (such as g5 in the example above). Doing so does not change the order of the input gates or the order of the output gates:

>>> c.count()
7
>>> c.prune_and_topological_sort_stable()
>>> c.count()
6

Documentation

The documentation can be generated automatically from the source files using Sphinx:

cd docs
python -m pip install -r requirements.txt
sphinx-apidoc -f -E --templatedir=_templates -o _source .. ../setup.py && make html

Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see setup.cfg for configuration details):

python -m pip install pytest pytest-cov
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python circuit/circuit.py -v

Style conventions are enforced using Pylint:

python -m pip install pylint
python -m pylint circuit

Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page page for this library.

Versioning

Beginning with version 0.2.0, the version number format for this library and the changes to the library associated with version number increments conform with Semantic Versioning 2.0.0.

Publishing

This library can be published as a package on PyPI by a package maintainer. Install the wheel package, remove any old build/distribution files, and package the source into a distribution archive:

python -m pip install wheel
rm -rf dist *.egg-info
python setup.py sdist bdist_wheel

Next, install the twine package and upload the package distribution archive to PyPI:

python -m pip install twine
python -m twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

circuit-1.0.0.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

circuit-1.0.0-py3-none-any.whl (10.3 kB view details)

Uploaded Python 3

File details

Details for the file circuit-1.0.0.tar.gz.

File metadata

  • Download URL: circuit-1.0.0.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for circuit-1.0.0.tar.gz
Algorithm Hash digest
SHA256 dfb8d2275281024a3e7e7b0b93558ec89a90ba644d3f38e1dfb54533de1a0453
MD5 11dd12ed60500895003d3927122b54bf
BLAKE2b-256 d1e35bb65832db2637ad01f8d299c665d133d96dcd0f457bec82f95437d77d40

See more details on using hashes here.

File details

Details for the file circuit-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: circuit-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 10.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for circuit-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1b47678431ee0facec3396502c66c76488e916d4a6240f235e9a5d8c765e9d1b
MD5 1506ad57fbac61c9501cd4b3afafe0ae
BLAKE2b-256 24d31d71a799d278c957926cd49b7f09dce21c03ea3313893b8b386d7276dccb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page