Skip to main content

cli for cirrus, a severless STAC-based processing pipeline

Project description

build-status-image coverage-status-image pypi-version

Cirrus

Cirrus is a STAC-based geospatial processing pipeline platform, implemented using a scalable architecture deployed on AWS. Cirrus provides the generic infrastructure for processing, allowing a user to focus on implementing the specific processing logic for their data.

As input, Cirrus takes a STAC ItemCollection, with a process definition block. That input is called a Cirrus ProcessPayload (CPP).

An input is run through a workflow that generates one or more output STAC Items. These output Items are added to the Cirrus static STAC catalog in S3, and are also broadcast via an SNS topic. Subscriptions to that topic can triggering additional workflows or external processes, such as indexing into a STAC API catalog (e.g., stac-server).

Cirrus workflows range from the simple publishing of unmodified input items to the complex transformation of input Items and generation of wholly-new output Items. The current state of CPP processing is tracked in a state database to prevent duplicate processing and allow for a user to follow the state of any input through the pipeline.

As shown in this high-level overview of Cirrus, users input data to Cirrus through the use of feeders. Feeders are simply programs that get/generate some type of STAC metadata, combine it with processing parameters, and pass it into Cirrus as a CPP.

Because Cirrus output is published via SNS, a Feeder can be configured to subscribe to that SNS and thus workflows can be chained, such that the output of one workflow becomes the input to another workflow, creating multiple levels of products all with published STAC metadata and clear links showing data provenance.

Cirrus Development

If developing new code for cirrus-geo, checkout the Contributing Guide.

Cirrus Quickstart

A Cirrus project is managed via the cirrus cli tool. Here's everything required to create, modify, and deploy a new project:

# Make a new directory for a project
❯ mkdir cirrus-project; cd cirrus-project

# Create a python virtual environment for isolation
❯ python -m venv .venv

# Activate our venv
❯ . .venv/bin/activate

# Install cirrus-geo
❯ pip install cirrus-geo
...

# Now we should have cirrus on our path
❯ cirrus
Usage: cirrus [OPTIONS] COMMAND [ARGS]...

  cli for cirrus, a severless STAC-based processing pipeline

Options:
  --cirrus-dir DIRECTORY
  -v, --verbose           Increase logging level. Can be specified multiple
                          times.  [x>=0]
  --help                  Show this message and exit.

Commands:
  build             Build the cirrus configuration into a serverless.yml.
  clean             Remove all files from the cirrus build directory.
  create            Create a new component in the project.
  init              Initialize a cirrus project in DIRECTORY.
  serverless (sls)  Run serverless within the cirrus build directory.
  show              Multifunction command to list/show components,
                    component...

# Fantastic!
# We can init our new project and see what all was created
❯ cirrus init
Succesfully initialized project in '/Users/jkeifer/cirrus-project'.

❯ ls
.venv/	cirrus.yml  /cloudformation  feeders/  functions/  package.json  tasks/  workflows/

# The cirrus.yml is almost good to go for a minimal install,
# but it does require a few parameters either set in the
# config or as environment variables:
#
#   custom:
#     batch:
#       SecurityGroupIds:
#         - ${env:SECURITY_GROUP_1}
#       Subnets:
#         - ${env:SUBNET_1}
#         - ${env:SUBNET_2}
#         - ${env:SUBNET_3}
#         - ${env:SUBNET_4}
#
# Use your favorite editor to set these values approriately
# based on your existing AWS resources.

# As we do have node.js dependencies from serverless,
# let's install those with the generated configuration
❯ npm install
...

# We can see all the built in feeders, tasks, and workflows (among others)
❯ cirrus show feeders
feed-rerun (built-in): Rerun items in the database

❯ cirrus show tasks
post-batch (built-in, lambda): Post process batch job by copying input from S3
pre-batch (built-in, lambda): Pre process batch job by copying input to S3
publish (built-in, lambda): Publish resulting STAC Collections and Items to catalog, and optionally SNS

❯ cirrus show workflows
publish-only (built-in): Simple example that just published input Collections and Items

# To create a new task, for example, we can do this
❯ cirrus create task -t lambda a_task "A task that doesn't do much yet"
task a_task created

❯ cirrus show tasks
post-batch (built-in, lambda): Post process batch job by copying input from S3
pre-batch (built-in, lambda): Pre process batch job by copying input to S3
publish (built-in, lambda): Publish resulting STAC Collections and Items to catalog, and optionally SNS
a_task (lambda): A task that doesn't do much yet

# We can see that created a task and its
# associated config inside the tasks directory
❯ tree tasks
tasks
└── a_task
    ├── README.md
    ├── definition.yml
    └── lambda_function.py

# To build our configuration in to something
# compatible with serverless, we use the build command
❯ cirrus build

# The output of build is in the .cirrus directory
❯ ls .cirrus
lambdas/  serverless.yml

# To deploy with serverless, we can simply do the following
# (optionally set the stage with `--stage <stage_name>`)
❯ cirrus serverless deploy

Cirrus Project Structure

A Cirrus project, most basically, is a directory containing a cirrus.yml configuration file. However, several subfolders are used to organize additional object definitions for custom implementations.

Folder Purpose
cloudformation Raw cloudformation templates to include in the project
feeders Feeder Lambda functions used to add data to Cirrus
functions Misc Lambda functions required by a project
tasks Task Lambda function used within workflows
workflows AWS Step Function definitions describing data processing workflows

Cirrus Repositories

Cirrus is divided up into several repositories, all under the cirrus-geo organization on GitHub, with this repository (cirrus-geo) the main one of interest to users.

Repository Purpose
cirrus-geo Main Cirrus repo implementing the cirrus cli tool for managing Cirrus projects. Also provides the base set of lambda functions and workflows.
cirrus-lib A Python library of convenience functions to interact with Cirrus. Lambda functions are kept lightweight
cirrus-task-images Dockerfiles and code for publishing Cirrus Docker images to Docker Hub that are used in Cirrus Batch tasks

The cirrus cli utilitiy is what is used to create, manage, and deploy Cirrus projects, and is pip-installable. The pip-installable python library cirrus-lib is used from all Cirrus Lambdas and tasks and is available to developers for writing their own tasks.

Documentation

Documentation for deploying, using, and customizing Cirrus is contained within the docs directory:

  • Learn how to get started
  • Understand the architecture of Cirrus and key concepts
  • Use Cirrus to process input data and publish resulting STAC Items
  • Cirrus features several component types that each represent a specific role within the Cirrus architecture

About

Cirrus is an Open-Source pipeline for processing geospatial data in AWS. Cirrus was developed by Element 84 originally under a NASA ACCESS project called Community Tools for Analysis of NASA Earth Observation System Data in the Cloud.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

cirrus_geo-0.0.0-py3-none-any.whl (228.3 kB view details)

Uploaded Python 3

File details

Details for the file cirrus_geo-0.0.0-py3-none-any.whl.

File metadata

  • Download URL: cirrus_geo-0.0.0-py3-none-any.whl
  • Upload date:
  • Size: 228.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for cirrus_geo-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6bc934f0c2bd1f55c8978983b31699ea03d42f0606ba4b3c6179a94bcbfffee0
MD5 554d669c407431135f2673643be1f073
BLAKE2b-256 a70fbab7aaee9273e3129c46df8134bdc8e09996e6e1df8c67210f27eab5288e

See more details on using hashes here.

Provenance

The following attestation bundles were made for cirrus_geo-0.0.0-py3-none-any.whl:

Publisher: python-publish.yml on cirrus-geo/cirrus-geo

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page