Skip to main content

A cli entrypoint for the citros system.

Project description

cli

CITROS cli

Commands


initialization

analyze the ROS2 project and initialize the .citros folder with all the files needed to operate citros

citros init 
    [-d | --destination] <repository folder>

doctor

checks for problems in .citros folder and suggests fixes

citros doctor
    [-d | --destination] <repository folder>

Run

starts a simulation locally or on remote

citros run
    [-gh | --github] #iniate an action that will runs the simulation on github as a workflow. 

    [-c] #completions

    [-o] #destination folder defaults to .citros/runs

    [-D] #dockerized - we will run dockerzed version of the simulation (can run parallel simulations on the same machine)

    [-p] #parallelism ? do we need it or can we know how many cpu available and devide it by the requested number of cpus per cpu 8 (available cpu) / 2 (requested cpu) = 4 (number of parallel runs)

    [-r] #remote run

    [-s] #simulation name

    [-t] #time limit

    [-v] #verbose

    [-w] #workflow

Batch

all batch operations

#get the data for a batch run
citros batch get <id>

#lists all batches + status
citros batch list

# delete a batch run
citros batch delete <id> | <simulation>/<name>

Data access

This DB will be used wo store the indexed bags for the

# starts server to listen for data access requests.
citros data access
    [-p] #port
    [-v] #verbose
    [-D] #dockerized

# prints the available data (db status) size, mem, how many batches loaded, etc...
citros data status

# create a new DB instance 
# creates all permissions and tables needed for CITROS
citros data create
    [-n] #name of the DB
    [-p] #port of the DB
    [-u] #user of the DB
    [-P] #password of the DB
    [-v] #verbose
    [-D] #dockerized

# clean the DB from data that wasend used for more then -d days -h hours -m minutes
citros data clean
    [-d] #days
    [-h] #hours
    [-m] #minutes
    [-v] #verbose
    [-D] #dockerized
REST API details

The user can check the availability of the data in a rest api that will be created by the service.

check the availability of the data

GET http://{domain}:{port}/{batch run name}

{
    "status": "unloaded",
    "last access": "2020-01-01 00:00:00",
    ...
}

request access for batch run

POST http://{domain}:{port}/{batch run name}

{
    "status": "loading",
    "last access": "2020-01-01 00:00:00",
    ...
}

Reports

A report is a signed set of generated notebooks with batch run data. this report can be shared trough CITROR or sent as a file.

# generate a signed report from a list of notebooks and use the data from the batch run specified.
citros report generate notebook.ipynb simulation/batch_run_name

# generate a report from report_name as specified unser .citros/reports/report_name.json
citros report generator report_name

Observability

start a node that will measue system / ros metrics and publish all to a topic

citros observability
    [-c] #channel
    [-t] #topic
    [-v] #verbose

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

citros-0.2.50.tar.gz (170.6 kB view details)

Uploaded Source

Built Distribution

citros-0.2.50-py3-none-any.whl (205.4 kB view details)

Uploaded Python 3

File details

Details for the file citros-0.2.50.tar.gz.

File metadata

  • Download URL: citros-0.2.50.tar.gz
  • Upload date:
  • Size: 170.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for citros-0.2.50.tar.gz
Algorithm Hash digest
SHA256 d089977b7a6f5fe6ab87f26b4e7c6d0105dfd0f271611bd9ac7e919933c4abc7
MD5 72356fbb04977e0a4061468d5ffa17a8
BLAKE2b-256 a4b6e8fb91dc78cb7a37c0d53fbb34f098ec3a60c8a2624f742a2b14e5b6bcdf

See more details on using hashes here.

File details

Details for the file citros-0.2.50-py3-none-any.whl.

File metadata

  • Download URL: citros-0.2.50-py3-none-any.whl
  • Upload date:
  • Size: 205.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for citros-0.2.50-py3-none-any.whl
Algorithm Hash digest
SHA256 4ff033171663d0d96e7cfe95490d5c72d664011f1e72c47b11e3e8cccc55e6af
MD5 ff228409bd5c06ed495f609d54dd9d6f
BLAKE2b-256 abaacdcf1fab6f18d3abf99cd37b1c7e649041acb2e6e22a590f446a622860a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page