Skip to main content

Python bindings for CityHash and FarmHash

Project description

CityHash/FarmHash

Python wrapper for FarmHash and CityHash, a family of fast non-cryptographic hash functions.

Build Status PyPI Version Conda-Forge Version Downloads License Supported Python Versions

Getting Started

To install from PyPI:

pip install cityhash

To install in a Conda environment:

conda install -c conda-forge python-cityhash

The package exposes Python APIs for CityHash and FarmHash under cityhash and farmhash namespaces, respectively. Each provides 32-, 64- and 128-bit implementations.

Usage Examples

Stateless hashing

Usage example for FarmHash:

>>> from farmhash import FarmHash32, FarmHash64, FarmHash128
>>> FarmHash32("abc")
1961358185
>>> FarmHash64("abc")
2640714258260161385
>>> FarmHash128("abc")
76434233956484675513733017140465933893

Hardware-independent fingerprints

Fingerprints are seedless hashes that are guaranteed to be hardware- and platform-independent. This can be useful for networking applications which require persisting hashed values.

>>> from farmhash import Fingerprint128
>>> Fingerprint128("abc")
76434233956484675513733017140465933893

Incremental hashing

CityHash and FarmHash do not support incremental hashing and thus are not ideal for hashing of character streams. If you require incremental hashing, consider another hashing library, such as MetroHash or xxHash.

Fast hashing of NumPy arrays

The Buffer Protocol allows Python objects to expose their data as raw byte arrays for fast access without having to copy to a separate location in memory. NumPy is one well-known library that extensively uses this protocol.

All hashing functions in this package will read byte arrays from objects that expose them via the buffer protocol. Here is an example showing hashing of a four-dimensional NumPy array:

>>> import numpy as np
>>> from farmhash import FarmHash64
>>> arr = np.zeros((256, 256, 4))
>>> FarmHash64(arr)
1550282412043536862

The NumPy arrays need to be contiguous for this to work. To convert a non-contiguous array, use NumPy's ascontiguousarray() function.

SSE4.2 support

For x86-64 platforms, the PyPI repository for this package includes wheels compiled with SSE4.2 support. The 32- and 64-bit (but not the 128-bit) variants of FarmHash significantly benefit from SSE4.2 instructions.

The vanilla CityHash functions (under cityhash module) do not take advantage of SSE4.2. Instead, one can use the cityhashcrc module provided with this package which exposes 128- and 256-bit CRC functions that do harness SSE4.2. These functions are very fast, and beat FarmHash128 on speed (FarmHash does not include a 256-bit function). Since FarmHash is the intended successor of CityHash, I would be careful before using the CityHash-CRC functions, however, and would verify whether they provide sufficient randomness for your intended application.

Development

Local workflow

For those wanting to contribute, here is a quick start using Make commands:

git clone https://github.com/escherba/python-cityhash.git
cd python-cityhash
make env           # create a virtual environment
make test          # run Python tests
make cpp-test      # run C++ tests
make shell         # enter IPython shell

To find out which Make targets are available, enter:

make help

Distribution

The package wheels are built using cibuildwheel and are distributed to PyPI using GitHub actions. The wheels contain compiled binaries and are available for the following platforms: windows-amd64, ubuntu-x86, linux-x86_64, linux-aarch64, and macosx-x86_64.

See Also

For other fast non-cryptographic hash functions available as Python extensions, see MetroHash, MurmurHash, and xxHash.

Authors

The original CityHash Python bindings are due to Alexander [Amper] Marshalov. They were rewritten in Cython by Eugene Scherba, who also added the FarmHash bindings. The CityHash and FarmHash algorithms and their C++ implementation are by Google.

License

This software is licensed under the MIT License. See the included LICENSE file for details.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cityhash-0.4.7.tar.gz (216.7 kB view details)

Uploaded Source

Built Distributions

cityhash-0.4.7-cp311-cp311-win_amd64.whl (55.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

cityhash-0.4.7-cp311-cp311-win32.whl (61.3 kB view details)

Uploaded CPython 3.11 Windows x86

cityhash-0.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (525.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (315.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp311-cp311-macosx_11_0_arm64.whl (64.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

cityhash-0.4.7-cp311-cp311-macosx_10_9_x86_64.whl (73.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

cityhash-0.4.7-cp310-cp310-win_amd64.whl (54.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

cityhash-0.4.7-cp310-cp310-win32.whl (60.5 kB view details)

Uploaded CPython 3.10 Windows x86

cityhash-0.4.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (291.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp310-cp310-macosx_11_0_arm64.whl (63.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

cityhash-0.4.7-cp310-cp310-macosx_10_9_x86_64.whl (72.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

cityhash-0.4.7-cp39-cp39-win_amd64.whl (55.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

cityhash-0.4.7-cp39-cp39-win32.whl (61.1 kB view details)

Uploaded CPython 3.9 Windows x86

cityhash-0.4.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (503.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (300.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp39-cp39-macosx_11_0_arm64.whl (64.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

cityhash-0.4.7-cp39-cp39-macosx_10_9_x86_64.whl (73.2 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

cityhash-0.4.7-cp38-cp38-win_amd64.whl (55.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

cityhash-0.4.7-cp38-cp38-win32.whl (61.4 kB view details)

Uploaded CPython 3.8 Windows x86

cityhash-0.4.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (505.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (300.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp38-cp38-macosx_10_9_x86_64.whl (73.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

cityhash-0.4.7-cp37-cp37m-win_amd64.whl (55.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

cityhash-0.4.7-cp37-cp37m-win32.whl (61.0 kB view details)

Uploaded CPython 3.7m Windows x86

cityhash-0.4.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (488.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (286.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp37-cp37m-macosx_10_9_x86_64.whl (72.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

cityhash-0.4.7-cp36-cp36m-win_amd64.whl (55.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

cityhash-0.4.7-cp36-cp36m-win32.whl (60.9 kB view details)

Uploaded CPython 3.6m Windows x86

cityhash-0.4.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (483.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

cityhash-0.4.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (282.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

cityhash-0.4.7-cp36-cp36m-macosx_10_9_x86_64.whl (72.5 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file cityhash-0.4.7.tar.gz.

File metadata

  • Download URL: cityhash-0.4.7.tar.gz
  • Upload date:
  • Size: 216.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7.tar.gz
Algorithm Hash digest
SHA256 6f9eb09b725f0ccfa84e7eaab859d6adb646963f5a7a0d1e0a50ae269625877c
MD5 8c1ae42cda5cf2161a4cbf32787e8f23
BLAKE2b-256 37940bc9bf508e6c39426a946a6217d20e3d471e57a45723c991213bb4616cd9

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 55.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 58d4f97a74eb5d5ddb10798f7ab7f7cca1a056c0c7542adb34a10dacb70d24d8
MD5 ec2246a6fc7acddf1a1e241b319601b0
BLAKE2b-256 b40a031fd6e6e8361b105d78fab0d739a5e427d17ff19d95ed6bb7aa98c8fb7c

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 61.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bf032e894776d73710e74d30884ad10e3db6b9f30a89b669620228a0ff760237
MD5 bc722acccf7e96e934598d629f2500cd
BLAKE2b-256 f34c584a8b53b1f600015926b07914e35d3f95f965139087c408f0a28373b3a7

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 199e1a804d9ef83d4c0b32faa96fa8389134666e8c3f584919f98bf39ec2dba8
MD5 4142c31b1b72f97e92837af8c0c5c365
BLAKE2b-256 7c0d08b205b4ccb1f5f6ad893ed6270636f37decdc630e945d53574b5f06fb3b

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 27bfeef13bf8e0bffb5e664aa608e1afec5736ee44ca6ff50e02affefbf2dc4e
MD5 11f33c20a1892eeeb3cd6625c4e585d6
BLAKE2b-256 ca9618c418a9c16c829118904d605c7f6c8b1a9196393307c8bdd60855abab8b

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4707f9326240e84d204586bc96876b5f1d1499f3f5d639a70495702e0a200c26
MD5 91737135e97d1b1e01b26e61058dd434
BLAKE2b-256 cf3f153fd2f00138559ac2bc72e32966425863952e376acf40530e98ed222770

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41b9ae2919d5a917eab90671ded650d5a1d0c5334b38499b2029e5e1f5010654
MD5 2ffd960e393532fc4d7fa6998245488f
BLAKE2b-256 10d7bd14347d2b3f834fd04f4c5857eb30269b1fc556a5b82f967635912eb498

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 54.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2c224cd7c4cef985f3aede0059c1fabba03b4a476e58a8c6ed207e7b0e0286c7
MD5 8c74f2f85ed46fe38b6b3d90580bba07
BLAKE2b-256 a5aec27f9bde4207de8c84e60547b698b5d8fe0aa4ef7a330f00fd2665ac156c

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 60.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 fba05cedc2b459106338c85284375386d0fedbbb740918bf89a4b4dd01f3fab9
MD5 b85d6d3c28554430ed031bc70ffa91c8
BLAKE2b-256 c3eab7ea54164ba7a675efbac1e9047141621b9074ebae9cc60d120fa5c71546

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a824a1c629ff2c73a2de9747751bb07ff034cfb15680a26e0aa7cbdd12a785a
MD5 1ded6d2128fe7f92f6ca519b93529480
BLAKE2b-256 157e3ae2c197b26a1a6bd332d5633967a45140c69ad990bef464862ad2882743

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2e1f8754a2ff5e0c9b73fc6d37a55e32353255f41c0e15b10f453a043b54bf3
MD5 8e2ff5447b9b0d9293d018d09e4d7eb7
BLAKE2b-256 031c49fcc2a559f2ad240195f8c83dffdac01631c6d9cf60eac608303e43ab89

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 398534267befbab8b714f2643bc46e8bffa82a6e0c12369f76fa7de8e8a83c27
MD5 cb76e2a9ff59649e184ae3971e147e4b
BLAKE2b-256 62b9775e5c3d0c6a00837a2b84b2ea8b76ad3c5b9d00d63a17224520eae1acda

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f04781c2385c8c2b7f628e0219f47f0c0b7a85a1c451829bb114f675a85e13d3
MD5 9672a72dde484dafb9527cdaef35e090
BLAKE2b-256 1e7c108cf839479465098ae71fc3266738e49e67eb643d69e87f151d3b8a6c9e

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5904ccf30aae1061ba9272b979a003776b913d62a23eb1009b9568463b456f8e
MD5 b087f36b3a01398d62b461afbfe54de7
BLAKE2b-256 dbb4b6457fc62b87375ba4b968949121686125ecf401d1cccfef90b80e3eb485

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 61.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 336a26d8cd5464176a29028189ad5e690b97056685be7abd9c0c923dcffcd2e1
MD5 d5e7ee3ad755d5aba4971ac2431622fa
BLAKE2b-256 d65025db19d90bcc89758cd1a8465aad7aa392af5585f93bb6dc488ae39dbc3c

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3135a82d57b27bd782916732964c3249680052a20e613df68a3256cd002183bb
MD5 a0557ca716840191732a712a5880bb84
BLAKE2b-256 e69f15352ff692caca91350b499c8ef2cb2fa3a3243f99021bab37ee03219c85

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c75c14ccfb61062ee828834003a7ca84fae473d0ade82896e1f3cbc53d68aab1
MD5 590d4ba4977f452af69a68ce52e30566
BLAKE2b-256 a4171cc2eaad69c05ffc21e726232bd1f1a4f6c01f2cf0cc85b05d15d51766be

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae834004a0030902c795d1ae1943837108c722f1aed62cb1b2012f869f2faa18
MD5 76a6d65e022a83c52257397e1420cfb3
BLAKE2b-256 700bf4d33c3d786a1c035fae561cb55fa53979657a8cc6a1966cb0be7c9dcb90

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f448918241e853039c70df612ae46349c4f0e05179035fc29ca8c157a1dadec6
MD5 4211e47162127b73ff7fb938ff100017
BLAKE2b-256 b1847608b12504f4897549d1c2113d9e7884ed7e354b481d3fc41485769d6838

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 55.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ba624521111321e4fdbd6a7a41b42450ee023989747226c07162a60089a7035b
MD5 8a4c8e11a532e0861c5b5a0b8d8d93d3
BLAKE2b-256 a2ca488bc804bebf58a7e3d244330a0cabff999cf32d27a0ddf588e0cc6a859c

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 61.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7b64513952a5bd0e50db1a53371bf1bf79d2e46b488a2df5935e5df546c38723
MD5 575fe0935ed24d6f43cddfc04ebf70a8
BLAKE2b-256 3a5868b2c523c62d4214ae9c1fb78bec261339c9731992e530ed0b3feb44b6e9

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b55bc8c2b56bf1a1823727694b21492adb3209bd9802931507ab421ef623b896
MD5 97117532c50a07b5757d2ec013c1ae6e
BLAKE2b-256 0ab1615f2fc3795c4cace49349fe40e22ee534252591382a512fa3b881702ca0

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bf1dedf49b8deb92027e03fc3263990e332ed4ef99f714a77831ef3fa709f63
MD5 e161750655d2de031ddcf2c48f70ace0
BLAKE2b-256 453ffd0d3d44cd6a49679ce996c567a9504bd04f9cb239ab85402a2d0a8505b6

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e357c5e9948aa0330f5165cdb028c53d6395d5648738dd445451139b98dd429f
MD5 7ce5d25b3232a6ab31ee4f41b665548d
BLAKE2b-256 e4757d7624e72bdc17f9c4c5294f4855bece761943c87140298590ff93bbbb4c

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 55.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7fbd65f7c8f8b5f07ae71e864c2d2c93746751ecd0e893ee5f1dcfae15c14c58
MD5 fecf7a9c2b0b7cabde86fcffbf8d0d74
BLAKE2b-256 55086238719f789351e5b7427c5cb92cedd7ffd8d5e97ff23488c581c44bb0f5

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp37-cp37m-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 61.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7b92b04749a1259e544a5d4e656bc7dbf73adb9e2fcbb07115ba9e72817808e4
MD5 25009b34f5b48f2ca83a5f41ea351d04
BLAKE2b-256 c6356c0ff07112fb2c312849b0524cfd6327335be3d75d90bbb96d38f08c0543

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7cff0796909179b70ea74079ee66aa23ca3082f6cf677c1be91b70e02fd7039
MD5 b9ef7c5e2b442a5d0eba8c637e33bdeb
BLAKE2b-256 ba25d2379a61d83f7f09cb970111066901c0661c64ba02bf7ca426fe812709bc

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13e33a2d90b676fe57b7fc7b4d64f0a66e2cc804023daccfacd5d5e8c8f7d76f
MD5 112f30e8a197338bcd4bbbd5eebd277e
BLAKE2b-256 fd55c0e7b634ad55d4fd575f501182ef60d6c9927cbdcb97e941103e8e499dfe

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4522836720a17728687c35a16f4bda840fba76720a8ff8a22288f6b14ed71220
MD5 92cc4157a5666bb46e849f589f874e0f
BLAKE2b-256 493fe7e4e69964051765d9203a689d5a2c2e4122aa52ed5ce671546a2dcd6668

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1ace1e5567956afb940b42aa67a46992d7186f769a5aa5ae1016803f218da2be
MD5 6b9da944000a0ffd13be260db4afadd7
BLAKE2b-256 4b84a9657a2a391eab2ac4d5936867fb4162d6bdcf983a4f80f1ce7f8deb6f96

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp36-cp36m-win32.whl.

File metadata

  • Download URL: cityhash-0.4.7-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 60.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for cityhash-0.4.7-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d2f9a8188780b9b745fc829ab4529d5966ef8b2181b1fe8597c1c34c3166fdd7
MD5 d2aae674ea6006b9f16b9f09ce044a30
BLAKE2b-256 1f1f13a366accab17b5e9e853ef343d34d877d814c0f51c713679f2b1724d43e

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eeadab947f47c5474757de671b2d738cc93a1c2752b53170247df168f37e29d5
MD5 2824092a418c1041f4ec62f643866f7c
BLAKE2b-256 740ee0caa193f10d244cf2e5d9cb048663ecb3b90646e974710892fe01c599ee

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 555de0297ec3ea4967024e092dfd4086b702dce4d4460cf9d8427222d692f11a
MD5 050ed096f8ab3c1967fa0389f03addc5
BLAKE2b-256 7f9e78ef3b9595ec4091dd18892aa34b1638f66135aaa9e473a9bcb0c0e242a8

See more details on using hashes here.

File details

Details for the file cityhash-0.4.7-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for cityhash-0.4.7-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35e8604268779c7a908aee7b5010848d9d41b9dfb0f4ffda9da1b351b561706a
MD5 9d40cd477b24f67d03036a34e2a844f2
BLAKE2b-256 673f02d18c28f477d79975e2b11e7848a04529ccf38b1a54e5b710e99c42c52c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page