Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

scikit-learn-compatible estimators from Civis Analytics

Project description

https://www.travis-ci.org/civisanalytics/civisml-extensions.svg?branch=master

scikit-learn-compatible estimators from Civis Analytics

Installation

Installation with pip is recommended:

$ pip install civisml-extensions

For development, a few additional dependencies are needed:

$ pip install -r dev-requirements.txt

Contents and Usage

This package contains scikit-learn-compatible estimators for stacking ( StackedClassifier, StackedRegressor), non-negative linear regression ( NonNegativeLinearRegression), preprocessing pandas DataFrames ( DataFrameETL), and using Hyperband for cross-validating hyperparameters ( HyperbandSearchCV).

Usage of these estimators follows the standard sklearn conventions. Here is an example of using the StackedClassifier:

>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.ensemble import RandomForestClassifier
>>> from civismlext.stacking import StackedClassifier
>>> # Note that the final estimator 'metalr' is the meta-estimator
>>> estlist = [('rf', RandomForestClassifier()),
>>>            ('lr', LogisticRegression()),
>>>            ('metalr', LogisticRegression())]
>>> mysm = StackedClassifier(estlist)
>>> # Set some parameters, if you didn't set them at instantiation
>>> mysm.set_params(rf__random_state=7, lr__random_state=8,
>>>                 metalr__random_state=9, metalr__C=10**7)
>>> # Fit
>>> mysm.fit(Xtrain, ytrain)
>>> # Predict!
>>> ypred = mysm.predict_proba(Xtest)

See the doc strings of the various estimators for more information.

Contributing

See CONTIBUTING.md for information about contributing to this project.

License

BSD-3

See LICENSE.md for details.

Project details


Release history Release notifications

History Node

0.1.9

History Node

0.1.8

History Node

0.1.7

History Node

0.1.6

History Node

0.1.5

History Node

0.1.4

History Node

0.1.3

History Node

0.1.2

This version
History Node

0.1.1

History Node

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
civisml-extensions-0.1.1.tar.gz (31.5 kB) Copy SHA256 hash SHA256 Source None Sep 14, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page