Skip to main content

A standalone Python implementation of the ByteTrack multi-object tracker based on the official implementation.

Project description

cjm-byte-track

A standalone Python implementation of the ByteTrack multi-object tracker based on the official implementation.

Install

pip install cjm_byte_track

Tutorial:

How to use

# Import ByteTrack package
from cjm_byte_track.core import BYTETracker
from cjm_byte_track.matching import match_detections_with_tracks
# Initialize a ByteTracker object
tracker = BYTETracker(track_thresh=0.25, track_buffer=30, match_thresh=0.8, frame_rate=frame_fps)

with tqdm(total=frames, desc="Processing frames") as pbar:
    while video_capture.isOpened():
        ret, frame = video_capture.read()
        if ret:
            
            # Prepare an input image for inference
            rgb_img, input_dims, offsets, min_img_scale, input_img = prepare_image_for_inference(frame, test_sz, max_stride)
                        
            # Convert the existing input image to NumPy format
            input_tensor_np = np.array(input_img, dtype=np.float32).transpose((2, 0, 1))[None]/255

            # Start performance counter`m
            start_time = time.perf_counter()
                        
            # Run inference
            outputs = session.run(None, {"input": input_tensor_np})[0]

            # Process the model output
            proposals = process_outputs(outputs, input_tensor_np.shape[input_dim_slice], bbox_conf_thresh)
            
            # Apply non-max suppression to the proposals with the specified threshold
            proposal_indices = nms_sorted_boxes(calc_iou(proposals[:, :-2]), iou_thresh)
            proposals = proposals[proposal_indices]
            
            bbox_list = (proposals[:,:4]+[*offsets, 0, 0])*min_img_scale
            label_list = [class_names[int(idx)] for idx in proposals[:,4]]
            probs_list = proposals[:,5]

            # Update tracker with detections.
            track_ids = [-1]*len(bbox_list)

            # Convert to tlbr format
            tlbr_boxes = bbox_list.copy()
            tlbr_boxes[:, 2:4] += tlbr_boxes[:, :2]

            # Update tracker with detections
            tracks = tracker.update(
                output_results=np.concatenate([tlbr_boxes, probs_list[:, np.newaxis]], axis=1),
                img_info=rgb_img.size,
                img_size=rgb_img.size)
            track_ids = match_detections_with_tracks(tlbr_boxes=tlbr_boxes, track_ids=track_ids, tracks=tracks)

            # End performance counter
            end_time = time.perf_counter()
            # Calculate the combined FPS for object detection and tracking
            fps = 1 / (end_time - start_time)
            # Display the frame rate in the progress bar
            pbar.set_postfix(fps=fps)

            # Filter object detections based on tracking results
            bbox_list, label_list, probs_list, track_ids = zip(*[(bbox, label, prob, track_id) 
                                                                 for bbox, label, prob, track_id 
                                                                 in zip(bbox_list, label_list, probs_list, track_ids) if track_id != -1])

            # Annotate the current frame with bounding boxes and tracking IDs
            annotated_img = draw_bboxes_pil(
                image=rgb_img, 
                boxes=bbox_list, 
                labels=[f"{track_id}-{label}" for track_id, label in zip(track_ids, label_list)],
                probs=probs_list,
                colors=[int_colors[class_names.index(i)] for i in label_list],  
                font=font_file,
            )
            annotated_frame = cv2.cvtColor(np.array(annotated_img), cv2.COLOR_RGB2BGR)
            
            video_writer.write(annotated_frame)
            pbar.update(1)
        else:
            break
video_capture.release()
video_writer.release()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cjm-byte-track-0.0.6.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

cjm_byte_track-0.0.6-py3-none-any.whl (20.4 kB view details)

Uploaded Python 3

File details

Details for the file cjm-byte-track-0.0.6.tar.gz.

File metadata

  • Download URL: cjm-byte-track-0.0.6.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for cjm-byte-track-0.0.6.tar.gz
Algorithm Hash digest
SHA256 98f9f876014e3bd245966b71addde1abbec95f51e33e18f0fea6b380e13d0ddb
MD5 d818573b112f20fe159a3b1222fda924
BLAKE2b-256 5a1e8e3cab0086bbeb1f07e24ee965f5e0a84091c05b7b8f9d05f6327351d1b2

See more details on using hashes here.

File details

Details for the file cjm_byte_track-0.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for cjm_byte_track-0.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 045dcc0f91fe423a065cbd1d85eff1217868b09ac9a32ee01a0f89d56eb1e501
MD5 71d5c4b2f6a01a1fc66c20bffe86674c
BLAKE2b-256 b3b96e251ea133163a517f6d32044fcbd99e4cb423e7c62b02b2118ac6fa4b23

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page