Some utility functions for working with the Kaggle API.
Project description
cjm-kaggle-utils
Install
pip install cjm_kaggle_utils
How to use
save_kaggle_creds
from cjm_kaggle_utils.core import save_kaggle_creds
username = "name"
key = "12345"
save_kaggle_creds(username, key, overwrite=False)
Credentials already present. Set `overwrite=True` to replace them.
dl_kaggle
from cjm_kaggle_utils.core import dl_kaggle
from pathlib import Path
# Get the path to the directory where datasets are stored
dataset_dir = Path("./Datasets/")
dataset_dir.mkdir(parents=True, exist_ok=True)
print(f"Dataset Directory: {dataset_dir}")
# Create the path to the data directory
archive_dir = dataset_dir/'../Archive'
archive_dir.mkdir(parents=True, exist_ok=True)
print(f"Archive Directory: {archive_dir}")
Dataset Directory: Datasets
Archive Directory: Datasets/../Archive
# Set the name of the dataset
dataset_name = 'style-image-samples'
# Construct the Kaggle dataset name by combining the username and dataset name
kaggle_dataset = f'innominate817/{dataset_name}'
# Create the path to the zip file that contains the dataset
archive_path = Path(f'{archive_dir}/{dataset_name}.zip')
print(f"Archive Path: {archive_path}")
# Create the path to the directory where the dataset will be extracted
dataset_path = Path(f'{dataset_dir}/{dataset_name}')
print(f"Dataset Path: {dataset_path}")
Archive Path: Datasets/../Archive/style-image-samples.zip
Dataset Path: Datasets/style-image-samples
dl_kaggle(kaggle_dataset, archive_path, dataset_path)
Downloading style-image-samples.zip to Datasets/../Archive
100%|██████████████████████████████████████████████████████████████████████████████████████████████| 16.2M/16.2M [00:00<00:00, 44.0MB/s]
!ls {dataset_path}
images
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file cjm-kaggle-utils-0.0.5.tar.gz
.
File metadata
- Download URL: cjm-kaggle-utils-0.0.5.tar.gz
- Upload date:
- Size: 5.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc57572d0f3bde351bbbbb94b60dd4d46b989cc9bcb1f711eca81166c0c087a9 |
|
MD5 | b7ff48a9a562b8f7ee43bb936ae81245 |
|
BLAKE2b-256 | a838214e20ab5cdd309d7647ad78a6043ae85b323610f430789d3540202bb2b1 |
File details
Details for the file cjm_kaggle_utils-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: cjm_kaggle_utils-0.0.5-py3-none-any.whl
- Upload date:
- Size: 4.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5eefdcbf823528c9d86573652f9ef9b8891eb8b6c8d42d82e0f26c92115aa32a |
|
MD5 | 99917e6dbf8afbbff6ff374c8cc2590c |
|
BLAKE2b-256 | 96b6a2a80e709d3d9d262d439fb1d3d1cf690359964a781d30ad7e225e5254c4 |