Skip to main content

Some utility functions for working with the Kaggle API.

Project description

cjm-kaggle-utils

Install

pip install cjm_kaggle_utils

How to use

save_kaggle_creds

from cjm_kaggle_utils.core import save_kaggle_creds
username = "name"
key = "12345"
save_kaggle_creds(username, key, overwrite=False)
Credentials already present. Set `overwrite=True` to replace them.

dl_kaggle

from cjm_kaggle_utils.core import dl_kaggle
from pathlib import Path
# Get the path to the directory where datasets are stored
dataset_dir = Path("./Datasets/")
dataset_dir.mkdir(parents=True, exist_ok=True)
print(f"Dataset Directory: {dataset_dir}")

# Create the path to the data directory
archive_dir = dataset_dir/'../Archive'
archive_dir.mkdir(parents=True, exist_ok=True)
print(f"Archive Directory: {archive_dir}")
Dataset Directory: Datasets
Archive Directory: Datasets/../Archive
# Set the name of the dataset
dataset_name = 'style-image-samples'

# Construct the Kaggle dataset name by combining the username and dataset name
kaggle_dataset = f'innominate817/{dataset_name}'
# Create the path to the zip file that contains the dataset
archive_path = Path(f'{archive_dir}/{dataset_name}.zip')
print(f"Archive Path: {archive_path}")

# Create the path to the directory where the dataset will be extracted
dataset_path = Path(f'{dataset_dir}/{dataset_name}')
print(f"Dataset Path: {dataset_path}")
Archive Path: Datasets/../Archive/style-image-samples.zip
Dataset Path: Datasets/style-image-samples
dl_kaggle(kaggle_dataset, archive_path, dataset_path)
Downloading style-image-samples.zip to Datasets/../Archive

100%|██████████████████████████████████████████████████████████████████████████████████████████████| 16.2M/16.2M [00:00<00:00, 44.0MB/s]
!ls {dataset_path}
images

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cjm-kaggle-utils-0.0.5.tar.gz (5.3 kB view details)

Uploaded Source

Built Distribution

cjm_kaggle_utils-0.0.5-py3-none-any.whl (4.9 kB view details)

Uploaded Python 3

File details

Details for the file cjm-kaggle-utils-0.0.5.tar.gz.

File metadata

  • Download URL: cjm-kaggle-utils-0.0.5.tar.gz
  • Upload date:
  • Size: 5.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for cjm-kaggle-utils-0.0.5.tar.gz
Algorithm Hash digest
SHA256 dc57572d0f3bde351bbbbb94b60dd4d46b989cc9bcb1f711eca81166c0c087a9
MD5 b7ff48a9a562b8f7ee43bb936ae81245
BLAKE2b-256 a838214e20ab5cdd309d7647ad78a6043ae85b323610f430789d3540202bb2b1

See more details on using hashes here.

File details

Details for the file cjm_kaggle_utils-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for cjm_kaggle_utils-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 5eefdcbf823528c9d86573652f9ef9b8891eb8b6c8d42d82e0f26c92115aa32a
MD5 99917e6dbf8afbbff6ff374c8cc2590c
BLAKE2b-256 96b6a2a80e709d3d9d262d439fb1d3d1cf690359964a781d30ad7e225e5254c4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page