Skip to main content

A PyTorch implementation of the YOLOX object detection model based on the mmdetection implementation.

Project description

cjm-yolox-pytorch

Install

pip install cjm_yolox_pytorch

How to use

import torch
from cjm_yolox_pytorch.model import MODEL_TYPES, build_model

Select model type

model_type = MODEL_TYPES[0]
model_type
'yolox_tiny'

Build YOLOX model

yolox = build_model(model_type, 19, pretrained=True)

test_inp = torch.randn(1, 3, 256, 256)

with torch.no_grad():
    cls_scores, bbox_preds, objectness = yolox(test_inp)
    
print(f"cls_scores: {[cls_score.shape for cls_score in cls_scores]}")
print(f"bbox_preds: {[bbox_pred.shape for bbox_pred in bbox_preds]}")
print(f"objectness: {[objectness.shape for objectness in objectness]}")
The file ./pretrained_checkpoints/yolox_tiny.pth already exists and overwrite is set to False.
cls_scores: [torch.Size([1, 19, 32, 32]), torch.Size([1, 19, 16, 16]), torch.Size([1, 19, 8, 8])]
bbox_preds: [torch.Size([1, 4, 32, 32]), torch.Size([1, 4, 16, 16]), torch.Size([1, 4, 8, 8])]
objectness: [torch.Size([1, 1, 32, 32]), torch.Size([1, 1, 16, 16]), torch.Size([1, 1, 8, 8])]

Project details


Release history Release notifications | RSS feed

This version

0.2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cjm_yolox_pytorch-0.2.0.tar.gz (23.7 kB view details)

Uploaded Source

Built Distribution

cjm_yolox_pytorch-0.2.0-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file cjm_yolox_pytorch-0.2.0.tar.gz.

File metadata

  • Download URL: cjm_yolox_pytorch-0.2.0.tar.gz
  • Upload date:
  • Size: 23.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.15

File hashes

Hashes for cjm_yolox_pytorch-0.2.0.tar.gz
Algorithm Hash digest
SHA256 f321c419b4cdd79233dae46b9f3f629b6af5068d224702e6fa1e35f8cd3f1b43
MD5 22846332c02cd6d5c1c00d7cff1b66c3
BLAKE2b-256 2fb62d44a52f4bf30382cb4b634e9a2a611d2738863633c9567d07a56d390a3f

See more details on using hashes here.

File details

Details for the file cjm_yolox_pytorch-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for cjm_yolox_pytorch-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 830b59d54cc25c26e339772f8198bd81bcaa7c72f5c970469dd2495ca307953b
MD5 076347c0ecc6a1febc4196284c574d66
BLAKE2b-256 dbbd72281753520aefebab81d91dd2c047011b9a12da9afababef869c1841223

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page