A PyTorch implementation of the YOLOX object detection model based on the mmdetection implementation.
Project description
cjm-yolox-pytorch
Install
pip install cjm_yolox_pytorch
How to use
import torch
from cjm_yolox_pytorch.model import MODEL_TYPES, build_model
Select model type
model_type = MODEL_TYPES[0]
model_type
'yolox_tiny'
Build YOLOX model
yolox = build_model(model_type, 19, pretrained=True)
test_inp = torch.randn(1, 3, 256, 256)
with torch.no_grad():
cls_scores, bbox_preds, objectness = yolox(test_inp)
print(f"cls_scores: {[cls_score.shape for cls_score in cls_scores]}")
print(f"bbox_preds: {[bbox_pred.shape for bbox_pred in bbox_preds]}")
print(f"objectness: {[objectness.shape for objectness in objectness]}")
The file ./pretrained_checkpoints/yolox_tiny.pth already exists and overwrite is set to False.
cls_scores: [torch.Size([1, 19, 32, 32]), torch.Size([1, 19, 16, 16]), torch.Size([1, 19, 8, 8])]
bbox_preds: [torch.Size([1, 4, 32, 32]), torch.Size([1, 4, 16, 16]), torch.Size([1, 4, 8, 8])]
objectness: [torch.Size([1, 1, 32, 32]), torch.Size([1, 1, 16, 16]), torch.Size([1, 1, 8, 8])]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
cjm_yolox_pytorch-0.2.0.tar.gz
(23.7 kB
view details)
Built Distribution
File details
Details for the file cjm_yolox_pytorch-0.2.0.tar.gz
.
File metadata
- Download URL: cjm_yolox_pytorch-0.2.0.tar.gz
- Upload date:
- Size: 23.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f321c419b4cdd79233dae46b9f3f629b6af5068d224702e6fa1e35f8cd3f1b43 |
|
MD5 | 22846332c02cd6d5c1c00d7cff1b66c3 |
|
BLAKE2b-256 | 2fb62d44a52f4bf30382cb4b634e9a2a611d2738863633c9567d07a56d390a3f |
File details
Details for the file cjm_yolox_pytorch-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: cjm_yolox_pytorch-0.2.0-py3-none-any.whl
- Upload date:
- Size: 25.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 830b59d54cc25c26e339772f8198bd81bcaa7c72f5c970469dd2495ca307953b |
|
MD5 | 076347c0ecc6a1febc4196284c574d66 |
|
BLAKE2b-256 | dbbd72281753520aefebab81d91dd2c047011b9a12da9afababef869c1841223 |