Skip to main content

Neural implementation of CKIP WS, POS, NER tools

Project description

CkipNeuTools

This open-source library implements neural CKIP-style Chinese NLP tools.

  • (WS) word segmentation
  • (POS) part-of-speech tagging
  • (NER) named entity recognition

Related demo sites

Features

  • +1.4%/+4.0%/+2.2% performance vs. classic CKIPWS(/POS/NER) on ASBC4.0/OntoNotes5.0
  • Do not auto delete/change/add characters
  • Support indefinitely long sentences
  • Support user-defined recommended-word list and must-word list

Installation

tl;dr.

pip install ckipneutools[tf,gdown]

ckipneutools is a Python library hosted on PyPI. Requirements:

  • python>=3.6
  • tensorflow / tensorflow-gpu (one of them)
  • gdown (optional, for downloading model files from google drive)

(Minimum installation) If you have set up tensorflow, and would like to download model files by your self.

pip install ckipneutools

(Complete installation) If you have just set up a clean virtual environment, and want everything, including GPU support.

pip install ckipneutools[tfgpu,gdown]

Usage

See the complete demo script: demo.py
Or the web demo

1. Download model files

The model files are available on several mirror sites.

You can download and extract to the desired path by one of the included API.

# Downloads to ./data.zip (2GB) and extracts to ./data/
# ckipneutools.data_utils.downlaod_data_iis("./") # iis-ckip
ckipneutools.data_utils.downlaod_data_gdrive("./") # gdrive-ckip

2. Load model

ws = ckipneutools.WS("./data")
pos = ckipneutools.POS("./data")
ner = ckipneutools.NER("./data")

3. (Optional) Create dictionary

You can supply words for WS speicial consideration, including their relative weights.

word_to_weight = {
    "土地公": 1,
    "土地婆": 1,
    "公有": 2,
    "": 1,
    "來亂的": "啦",
    "緯來體育台": 1,
}
dictionary = ckipneutools.construct_dictionary(word_to_weight)
print(dictionary)
[(2, {'公有': 2.0}), (3, {'土地公': 1.0, '土地婆': 1.0}), (5, {'緯來體育台': 1.0})]

4. Run the WS-POS-NER pipeline

sentence_list = [
    "傅達仁今將執行安樂死,卻突然爆出自己20年前遭緯來體育台封殺,他不懂自己哪裡得罪到電視台。",
    "美國參議院針對今天總統布什所提名的勞工部長趙小蘭展開認可聽證會,預料她將會很順利通過參議院支持,成為該國有史以來第一位的華裔女性內閣成員。",
    "",
    "土地公有政策??還是土地婆有政策。.",
    "… 你確定嗎… 不要再騙了……",
    "最多容納59,000個人,或5.9萬人,再多就不行了.這是環評的結論.",
    "科長說:1,坪數對人數為1:3。2,可以再增加。",
]

word_sentence_list = ws(
    sentence_list,
    # sentence_segmentation=True, # To consider delimiters
    # segment_delimiter_set = {",", "。", ":", "?", "!", ";"}), # This is the defualt set of delimiters
    # recommend_dictionary = dictionary1, # words in this dictionary are encouraged
    # coerce_dictionary = dictionary2, # words in this dictionary are forced
)

pos_sentence_list = pos(word_sentence_list)

entity_sentence_list = ner(word_sentence_list, pos_sentence_list)

5. (Optional) Release memory

del ws
del pos
del ner

6. Show Results

def print_word_pos_sentence(word_sentence, pos_sentence):
    assert len(word_sentence) == len(pos_sentence)
    for word, pos in zip(word_sentence, pos_sentence):
        print(f"{word}({pos})", end="\u3000")
    print()
    return

for i, sentence in enumerate(sentence_list):
    print()
    print(f"'{sentence}'")
    print_word_pos_sentence(word_sentence_list[i],  pos_sentence_list[i])
    for entity in sorted(entity_sentence_list[i]):
        print(entity)

'傅達仁今將執行安樂死,卻突然爆出自己20年前遭緯來體育台封殺,他不懂自己哪裡得罪到電視台。'
傅達仁(Nb) 今(Nd) 將(D) 執行(VC) 安樂死(Na) ,(COMMACATEGORY) 卻(D) 突然(D) 爆出(VJ) 自己(Nh) 20(Neu) 年(Nf) 前(Ng) 遭(P) 緯來(Nb) 體育台(Na) 封殺(VC) ,(COMMACATEGORY) 他(Nh) 不(D) 懂(VK) 自己(Nh) 哪裡(Ncd) 得罪到(VJ) 電視台(Nc) 。(PERIODCATEGORY) 
(0, 3, 'PERSON', '傅達仁')
(18, 22, 'DATE', '20年前')
(23, 28, 'ORG', '緯來體育台')

'美國參議院針對今天總統布什所提名的勞工部長趙小蘭展開認可聽證會,預料她將會很順利通過參議院支持,成為該國有史以來第一位的華裔女性內閣成員。'
美國(Nc) 參議院(Nc) 針對(P) 今天(Nd) 總統(Na) 布什(Nb) 所(D) 提名(VC) 的(DE) 勞工部長(Na) 趙小蘭(Nb) 展開(VC) 認可(VC) 聽證會(Na) ,(COMMACATEGORY) 預料(VE) 她(Nh) 將(D) 會(D) 很(Dfa) 順利(VH) 通過(VC) 參議院(Nc) 支持(VC) ,(COMMACATEGORY) 成為(VG) 該(Nes) 國(Nc) 有史以來(D) 第一(Neu) 位(Nf) 的(DE) 華裔(Na) 女性(Na) 內閣(Na) 成員(Na) 。(PERIODCATEGORY) 
(0, 2, 'GPE', '美國')
(2, 5, 'ORG', '參議院')
(7, 9, 'DATE', '今天')
(11, 13, 'PERSON', '布什')
(17, 21, 'ORG', '勞工部長')
(21, 24, 'PERSON', '趙小蘭')
(42, 45, 'ORG', '參議院')
(56, 58, 'ORDINAL', '第一')
(60, 62, 'NORP', '華裔')

''


'土地公有政策??還是土地婆有政策。.'
土地公(Nb) 有(V_2) 政策(Na) ?(QUESTIONCATEGORY) ?(QUESTIONCATEGORY) 還是(Caa) 土地(Na) 婆(Na) 有(V_2) 政策(Na) 。(PERIODCATEGORY) .(PERIODCATEGORY) 
(0, 3, 'PERSON', '土地公')

'… 你確定嗎… 不要再騙了……'
…(ETCCATEGORY)  (WHITESPACE) 你(Nh) 確定(VK) 嗎(T) …(ETCCATEGORY)  (WHITESPACE) 不要(D) 再(D) 騙(VC) 了(Di) …(ETCCATEGORY) …(ETCCATEGORY) 

'最多容納59,000個人,或5.9萬人,再多就不行了.這是環評的結論.'
最多(VH) 容納(VJ) 59,000(Neu) 個(Nf) 人(Na) ,(COMMACATEGORY) 或(Caa) 5.9萬(Neu) 人(Na) ,(COMMACATEGORY) 再(D) 多(D) 就(D) 不行(VH) 了(T) .(PERIODCATEGORY) 這(Nep) 是(SHI) 環評(Na) 的(DE) 結論(Na) .(PERIODCATEGORY) 
(4, 10, 'CARDINAL', '59,000')
(14, 18, 'CARDINAL', '5.9萬')

'科長說:1,坪數對人數為1:3。2,可以再增加。'
科長(Na) 說(VE) :1,(Neu) 坪數(Na) 對(P) 人數(Na) 為(VG) 1:3(Neu) 。(PERIODCATEGORY) 2(Neu) ,(COMMACATEGORY) 可以(D) 再(D) 增加(VHC) 。(PERIODCATEGORY) 
(4, 6, 'CARDINAL', '1,')
(12, 13, 'CARDINAL', '1')
(14, 15, 'CARDINAL', '3')
(16, 17, 'CARDINAL', '2')

LICENSE

Creative Commons License
Copyright 2019 CKIP

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ckipneutools-0.0.9.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

ckipneutools-0.0.9-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file ckipneutools-0.0.9.tar.gz.

File metadata

  • Download URL: ckipneutools-0.0.9.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.8

File hashes

Hashes for ckipneutools-0.0.9.tar.gz
Algorithm Hash digest
SHA256 cf52a2070e9c5fe063d137d62b78921ebec5e48e9470e83dbfed4b1b0808dd48
MD5 7ff39952d39a469159f0fde4a0870eb9
BLAKE2b-256 6a02a401979de171b9ccd921e21c076512b07f0f9146e01af971f05d9522ce26

See more details on using hashes here.

File details

Details for the file ckipneutools-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: ckipneutools-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.34.0 CPython/3.6.8

File hashes

Hashes for ckipneutools-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 79beeac80eb3971b1f920dfaada0caf0f7da2f59a752e26324f00190505c04f8
MD5 b6e3d51fe01871ab1736f6240f9f1039
BLAKE2b-256 365da944a94ac351cf450a3320d64afc58070809a06d2028eb20031c5b104814

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page