Skip to main content

Hubeau client to collect data from the different APIs

Project description

cl-hubeau

Simple hub'eau client for python

This package is currently under active development. Every API on Hub'eau will be covered by this package in due time.

At this stage, the following APIs are covered by cl-hubeau:

For any help on available kwargs for each endpoint, please refer directly to the documentation on hubeau (this will not be covered by the current documentation).

Assume that each function from cl-hubeau will be consistent with it's hub'eau counterpart, with the exception of the size and page or cursor arguments (those will be set automatically by cl-hubeau to crawl allong the results).

Configuration

First of all, you will need API keys from INSEE to use some high level operations, which may loop over cities'official codes. Please refer to pynsee's API subscription Tutorial for help.

Basic examples

Clean cache

from cl_hubeau.utils import clean_all_cache
clean_all_cache

Piezometry

3 high level functions are available (and one class for low level operations).

Get all piezometers (uses a 30 days caching):

from cl_hubeau import piezometry
gdf = piezometry.get_all_stations()

Get chronicles for the first 100 piezometers (uses a 30 days caching):

df = piezometry.get_chronicles(gdf["code_bss"].head(100).tolist())

Get realtime data for the first 100 piezometers:

A small cache is stored to allow for realtime consumption (cache expires after only 15 minutes). Please, adopt a responsible usage with this functionnality !

df = get_realtime_chronicles(gdf["code_bss"].head(100).tolist())

Low level class to perform the same tasks:

Note that :

  • the API is forbidding results > 20k rows and you may need inner loops
  • the cache handling will be your responsibility, noticely for realtime data
with piezometry.PiezometrySession() as session:
    df = session.get_chronicles(code_bss="07548X0009/F")
    df = session.get_stations(code_departement=['02', '59', '60', '62', '80'], format="geojson")
    df = session.get_chronicles_real_time(code_bss="07548X0009/F")

Hydrometry

4 high level functions are available (and one class for low level operations).

Get all stations (uses a 30 days caching):

from cl_hubeau import hydrometry 
gdf = hydrometry.get_all_stations()

Get all sites (uses a 30 days caching):

gdf = hydrometry.get_all_sites()

Get observations for the first 5 sites (uses a 30 days caching): Note that this will also work with stations (instead of sites).

df = hydrometry.get_observations(gdf["code_site"].head(5).tolist())

Get realtime data for the first 5 sites (no cache stored):

A small cache is stored to allow for realtime consumption (cache expires after only 15 minutes). Please, adopt a responsible usage with this functionnality !

df = hydrometry.get_realtime_observations(gdf["code_site"].head(5).tolist())

Low level class to perform the same tasks:

Note that :

  • the API is forbidding results > 20k rows and you may need inner loops
  • the cache handling will be your responsibility, noticely for realtime data
with hydrometry.HydrometrySession() as session:
    df = session.get_stations(code_station="K437311001")
    df = session.get_sites(code_departement=['02', '59', '60', '62', '80'], format="geojson")
    df = session.get_realtime_observations(code_entite="K437311001")
    df = session.get_observations(code_entite="K437311001")

Drinking water quality

2 high level functions are available (and one class for low level operations).

Get all water networks (UDI) (uses a 30 days caching):

from cl_hubeau import drinking_water_quality 
df = drinking_water_quality.get_all_water_networks()

Get the sanitary controls's results for nitrates on all networks of Paris, Lyon & Marseille (uses a 30 days caching) for nitrates

networks = drinking_water_quality.get_all_water_networks()
networks = networks[
    networks.nom_commune.isin(["PARIS", "MARSEILLE", "LYON"])
    ]["code_reseau"].unique().tolist()

df = drinking_water_quality.get_control_results(
    codes_reseaux=networks,
    code_parametre="1340"
)

Note that this query is heavy, even if this was already restricted to nitrates. In theory, you could also query the API without specifying the substance you're tracking, but you may hit the 20k threshold and trigger an exception.

As it is, the get_control_results function already implements a double loop:

  • on networks' codes (20 codes maximum) ;
  • on periods, requesting only yearly datasets (which should be scalable over time and should work nicely with the cache algorithm).

You can also call the same function, using official city codes directly:

df = drinking_water_quality.get_control_results(
    codes_communes=['59350'],
    code_parametre="1340"
)

Low level class to perform the same tasks:

Note that :

  • the API is forbidding results > 20k rows and you may need inner loops
  • the cache handling will be your responsibility
with drinking_water_quality.DrinkingWaterQualitySession() as session:
    df = session.get_cities_networks(nom_commune="LILLE")
    df = session.get_control_results(code_departement='02', code_parametre="1340")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cl_hubeau-0.3.0.tar.gz (15.3 kB view hashes)

Uploaded Source

Built Distribution

cl_hubeau-0.3.0-py3-none-any.whl (21.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page