Persistent and reproducible experimental pipelines for Machine Learning
Project description
Classic Experiments
Persistent and reproducible experimental pipelines for Machine Learning.
Installation
pip install classicexperiments
Example Usage
We want to compare several classifiers with respect to a number of datasets.
We simply load the datasets and define a number of Estimator
instances.
import sklearn.ensemble
import sklearn.neighbors
import sklearn.neural_network
import sklearn.preprocessing
import sklearn.tree
from classicdata import (
USPS,
ImageSegmentation,
Ionosphere,
LetterRecognition,
MagicGammaTelescope,
PenDigits,
RobotNavigation,
)
from classicexperiments import Estimator, Evaluation, Experiment
# Prepare datasets.
datasets = [
Ionosphere(),
LetterRecognition(),
MagicGammaTelescope(),
PenDigits(),
RobotNavigation(),
ImageSegmentation(),
USPS(),
]
# Prepare estimators.
estimators = [
Estimator(
name="Dummy",
estimator_class=sklearn.dummy.DummyClassifier,
parameters={},
),
Estimator(
name="5-nn",
estimator_class=sklearn.neighbors.KNeighborsClassifier,
parameters={"n_neighbors": 5},
),
Estimator(
name="Tree",
estimator_class=sklearn.tree.DecisionTreeClassifier,
parameters={},
),
Estimator(
name="Forest",
estimator_class=sklearn.ensemble.AdaBoostClassifier,
parameters={},
),
Estimator(
name="MLP",
estimator_class=sklearn.neural_network.MLPClassifier,
parameters={},
),
Estimator(
name="KernelSVM",
estimator_class=sklearn.svm.SVC,
parameters={"kernel": "sigmoid"},
),
]
# Prepare experiments.
experiments = [
Experiment(
dataset=dataset,
estimator=estimator,
estimation_function=sklearn.model_selection.cross_val_score,
parameters={},
scaler=sklearn.preprocessing.StandardScaler(),
)
for estimator in estimators
for dataset in datasets
]
# Prepare evaluation.
evaluation = Evaluation(experiments=experiments, base_dir="evaluation")
# Run evaluation.
evaluation.run()
# Present results.
evaluation.present(table_format="github")
Results are automatically stored, and we end up with a tidy table.
Dataset | Dummy | 5-nn | Tree | Forest | MLP | KernelSVM |
---|---|---|---|---|---|---|
Ionosphere | 0.64 ±0.0036 | 0.83 ±0.0388 | 0.86 ±0.0491 | 0.91 ±0.0549 | 0.90 ±0.0405 | 0.84 ±0.0630 |
Letter Recognition | 0.04 ±0.0001 | 0.94 ±0.0022 | 0.88 ±0.0051 | 0.26 ±0.0356 | 0.95 ±0.0044 | 0.47 ±0.0119 |
Pen Digits | 0.10 ±0.0000 | 0.99 ±0.0022 | 0.96 ±0.0048 | 0.43 ±0.1198 | 0.99 ±0.0017 | 0.74 ±0.0067 |
Robot Navigation | 0.40 ±0.0001 | 0.77 ±0.0563 | 0.98 ±0.0140 | 0.80 ±0.0365 | 0.87 ±0.0472 | 0.48 ±0.0272 |
Segmentation | 0.14 ±0.0000 | 0.92 ±0.0505 | 0.94 ±0.0334 | 0.48 ±0.0700 | 0.95 ±0.0362 | 0.75 ±0.0914 |
Telescope | 0.65 ±0.0001 | 0.81 ±0.0060 | 0.82 ±0.0046 | 0.84 ±0.0050 | 0.87 ±0.0050 | 0.65 ±0.0043 |
USPS | 0.17 ±0.0003 | 0.96 ±0.0030 | 0.88 ±0.0088 | 0.55 ±0.0898 | 0.97 ±0.0049 | 0.88 ±0.0053 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file classicexperiments-0.1.0a1.tar.gz
.
File metadata
- Download URL: classicexperiments-0.1.0a1.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.5.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9b442ccba3b53568e4c01a098e9e462360c5746cf34ec513454124f49b4830d |
|
MD5 | bafd1f7ba5480214e20e18e73885d529 |
|
BLAKE2b-256 | fd657f9c49df7aaab5f05c56010ef49583b1b86ade976828526947a40e8f7bf9 |
File details
Details for the file classicexperiments-0.1.0a1-py3-none-any.whl
.
File metadata
- Download URL: classicexperiments-0.1.0a1-py3-none-any.whl
- Upload date:
- Size: 6.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.5.0 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 325539df08144743e1684f5b0931876cd5b105cafa3b6805589a5b0165bee98c |
|
MD5 | e08b63a067aeea6cc689a7ebac9354e6 |
|
BLAKE2b-256 | 1af93b0630e23619a2aef09d98b94a3cf774c7934a8adae37c00ffaffea9065e |