Skip to main content

An easy-to-use ML framework

Project description

classicML: 简单易用的经典机器学习框架

build win-build PyPI win-PyPI Documentation Status PyPI PyPI - Python Version

classicML 是一个用 Python 和 C++ 混编的机器学习项目,您既可以使用纯 Python 版本进行学习,也可以使用CC标准版进行实验和探索自定义功能。它既实现了Python的简单易用快速上手,又实现了C++的高效性能。classicML的设计目标是简单易用,快速入门,高扩展性和编程风格简洁。更多信息请访问文档网站

多后端支持

classicML 本身是一个Python项目,但是机器学习中涉及到的复杂的矩阵运算对于Python有点儿捉襟见肘,因此我们提供了使用C++后端的加速版本。为了保证兼容性,classicML默认使用Python后端,现在全部算法支持了使用C++作为后端进行加速,如果您需要使用标准版的classicML,只需在开头使用这条语句切换后端。

import os
os.environ['CLASSICML_ENGINE'] = 'CC'

精度控制

目前,classicML 正在对全部算法支持32位和64位切换精度,使用32位的精度可以获得更快的运行速度和更小固化模型。

import os
os.environ['CLASSICML_PRECISION'] = '32-bit'

第一个机器学习程序

使用线性判别分析进行二分类

  • 下载示例数据集
wget https://github.com/sun1638650145/classicML/blob/master/datasets/西瓜数据集alpha.csv
  • 运行下面的代码
import classicML as cml

DATASET_PATH = '/path/to/西瓜数据集alpha.csv'

# 读取数据
ds = cml.data.Dataset()
ds.from_csv(DATASET_PATH)
# 生成模型
model = cml.models.LDA()
# 训练模型
model.fit(ds.x, ds.y)
# 可视化模型
cml.plots.plot_lda(model, ds.x, ds.y, '密度', '含糖率')

感谢Jetbrains Open Source对项目的支持

v0.9 预览

  • 这个版本将增加cml.models.cluster模块, 并添加几种聚类算法
  • 将在v1.0之前添加100%的类型注释

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classicML-0.9.tar.gz (92.8 kB view details)

Uploaded Source

Built Distributions

classicML-0.9-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

classicML-0.9-cp310-cp310-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

classicML-0.9-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

classicML-0.9-cp310-cp310-macosx_10_14_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

classicML-0.9-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

classicML-0.9-cp39-cp39-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

classicML-0.9-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

classicML-0.9-cp39-cp39-macosx_10_15_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

classicML-0.9-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

classicML-0.9-cp38-cp38-manylinux2010_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

classicML-0.9-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

classicML-0.9-cp38-cp38-macosx_10_15_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

classicML-0.9-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

classicML-0.9-cp37-cp37m-manylinux2010_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

classicML-0.9-cp37-cp37m-macosx_10_15_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file classicML-0.9.tar.gz.

File metadata

  • Download URL: classicML-0.9.tar.gz
  • Upload date:
  • Size: 92.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for classicML-0.9.tar.gz
Algorithm Hash digest
SHA256 35dcca4a27fe1815730b94983654000da51bf62421966e3c4b8a5118b569af42
MD5 df40d4f4089a09eaf6bc11be6d04aef6
BLAKE2b-256 6d0980490d42a70e6ad553599669e96c01cb61961147b3872ae36b201e8d8786

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: classicML-0.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for classicML-0.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8a46747c84d4eca62c50ce25cbe1177aa6ea059933db1c47bdada233956a379b
MD5 716d4b83427b558f9a1f89e05e7e7e3f
BLAKE2b-256 0465573955d96f95ed13746f6547f653d403873a7696a7fd4c8e9ccb8d7bf1a3

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp310-cp310-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp310-cp310-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b555c3c24bb65e1d05986ba31900e1e8ce74cb4189dfc09f5cfc589859b0873
MD5 21b4bd9123123e9f3ef577e4913a0d8b
BLAKE2b-256 7875a667d4fe112810cf0c39283dde0b0107017b47f4de5afb674710e3cc38da

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed9437df1bf2b82c3bda8b814a84e48ff43c0c7236529c9c8ec855a7ac30459c
MD5 2ee331cb394760196f96d8a03389132d
BLAKE2b-256 7cdb638664a29c2295de4172f8ddfa58a179a819d12f278ef6daf43d458b11f4

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 59a6946ee254089d012206b8bf8d43ba7c6de377762458b50970893742737607
MD5 27c101f6b17266015dd9e76e69f20f8b
BLAKE2b-256 7b407db043cc383b77fe9d1eb5d8a3bcdb865e172a81493319b2ba7c3cb91ef9

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: classicML-0.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for classicML-0.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 873da632c73c24fbad1f6691bb8ebbaa8980cbd2cc177ce394603c9e3b79c9c9
MD5 fb7006766268ee7e2acc26ecfc6767b2
BLAKE2b-256 86981ff74c3dbec1a39a276863ea2ed4a452e6a74c56d0c539af40211fa02ff0

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eb058afa0b5fa5036f2ded8f2e0736c0b4811d857f9cef5a77c5cd66e0332196
MD5 4aa481c047ea661abf5e38da826b82a7
BLAKE2b-256 b9cac3ad14b162ac11f033ddb134e74e4d16459d3ab2202b8f413f6bab25b2db

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ef9f6c801c29e2516095c6e44932d0030b235b9ac4be06177588972b506a6af6
MD5 0dbfb08379bea5f5b2d2d6aaadae5ac6
BLAKE2b-256 a282381914f59d40bc300df04cc762a2c02e8d52fba2a462b01414c67404c244

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 afacd7b3cda864027ae4ddfbd8229af84fe16c1eb3de97c3e7ed0ad132f1247c
MD5 a3417cfdf9420edcbb0b2c84a4b971ba
BLAKE2b-256 49830a2c19612663ca03438252fa5ad431a4a9086680a13befe2ed4838670721

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: classicML-0.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for classicML-0.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 90d9c365d75ef6e15cafe224be74c97462002e5c6b217bd68652a77595cd753c
MD5 ada9d6be659980f98b0a9f5fb20d9f83
BLAKE2b-256 4c0682d4412c3f76277f5824d7ee29a45f3d7628112febf6cbefa4859349bcff

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7aca64dc230c0800c93edbf0931e5d25ed82bfff7c596766de1c18fbc0f7db76
MD5 2519b41daf64406dce437a076409eca9
BLAKE2b-256 91d53a8841e84ba921d78bcf82646b51f8ffa235aeee9f4a4d952cb28fbfb38c

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a65a84704c182dcec29111af3f235e841648cd65a702c88d178913ce12250d08
MD5 260e712b1d32843effab84ea79bc669e
BLAKE2b-256 c0d838cc16b9390953f463764b094ae12db2d06311565bba2a1633c5de31c1b9

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5a819fa483306cf8a116b7a44ad80374c07e16635afeee39523f0e034d69cf06
MD5 2609f44694dda21a86b62437aa0d2d4f
BLAKE2b-256 a89aadd4ada194812a82cd64598a84aecc50d67a5308e5f9ad61dab3051af7f3

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: classicML-0.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.9

File hashes

Hashes for classicML-0.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3fc968e67d310a0705e794517a4954ee6db69d974e86d3b83c972697de422dba
MD5 fb82e7df76c71dc8139b76715ddc71e1
BLAKE2b-256 c0184c94235dce5b71b05dff274f02dc754cbda0621fa2653aeeba60e4cf79ae

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 377ec51d678569e6b6a2d43a61392ce7d12592f8213d7b0cc85c28aa9165f29a
MD5 38c5463588a94c973ab808791b612563
BLAKE2b-256 3779ec6125194310f9e7647108b80af84b0ec34376cde534ee011b420d2ab983

See more details on using hashes here.

File details

Details for the file classicML-0.9-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for classicML-0.9-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 476071288f6b66a93bd842e33dfc6f99c095526e596c65080fd89a2e736c0bc3
MD5 95da9ea79db3f96425d3bc50b8dbf836
BLAKE2b-256 c8da0ee9f73d5c96d98bf8b91630d8b5682f6c35be2d4c2230c2b7ec0229c1e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page