Skip to main content

Graphical User Interface for machine learning classification algorithms from scikit-learn

Project description

ClassificaIO

This repository contains ClassificaIO, a Python package that provides a graphical user (GUI) for machine learning classification algorithms from scikit-learn.

ClassificaIO Installation Instructions

A. INSTALLATION

Installation Instructions

1. Mac or Windows

To install the current ClassificaIO release use pip:

pip install ClassificaIO

Alternatively, you can install directly from github using:

pip install git+https://github.com/gmiaslab/ClassificaIO/

2. Linux

First install the current release of tkinter and pip

sudo apt-get install python3-tk
sudo apt-get install python3-pip

To install the current ClassificaIO release use pip

pip3 install ClassificaIO

Alternatively, you can install directly from github using:

pip3 install git+https://github.com/gmiaslab/ClassificaIO/

B. RUNNING ClassificaIO

After installation you can run:

>>> from ClassificaIO import ClassificaIO
>>> ClassificaIO.gui()

C. DOCUMENTATION

Documentation for ClassificaIO is provided in the manual, available online at: * https://github.com/gmiaslab/manuals/blob/master/ClassificaIO/ClassificaIO_UserManual.pdf

The manual can also be accessed directly through the Help menu in ClassificaIO that points to the above location.

D. LICENSING

ClassificaIO is provided under an MIT license.

E. OTHER CONTACT INFORMATION

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ClassificaIO-1.1.5.1.tar.gz (332.2 kB view details)

Uploaded Source

File details

Details for the file ClassificaIO-1.1.5.1.tar.gz.

File metadata

  • Download URL: ClassificaIO-1.1.5.1.tar.gz
  • Upload date:
  • Size: 332.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for ClassificaIO-1.1.5.1.tar.gz
Algorithm Hash digest
SHA256 43b83c381ec2e775cf732cb729d4f4e99037c19b9724e47a250296c7a2eaee98
MD5 4f6af0a789faf3b65a293a1857b8928a
BLAKE2b-256 ade6512c4725f116751a981d23bed8a93d180f6fd43855eca9cc4abf47b965ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page