Skip to main content

All classifier algorithm at one place

Project description

All Classifier Algorithm At One Place
This is a package that contains all the best classifier algorithms like

  • LogisticRegression
  • SVM
  • Decision Tree
  • Random Forest
  • Naiv Bayes
  • SGDClassifier
  • Xgboost
  • Adaboost
  • KNN
    To access all these classifier you have to implement a simple code rather that importing all these classifier from different package
  • Provide the x_train,y_train,x_test,y_test value to the Classifier object
  • Now call the classifier function
  • Note: In case of KNN also provide the n_neighbour value
from classification_algorithm import Classifier
clf = Classifier(x_train, y_train, x_test, y_test)
    clf.logisticregression()
    clf.svm()
    clf.sgdclassifier()
    clf.decisiontree()
    clf.adaboost()
    clf.randomforest()
    clf.xgboost()
    clf.knn(3)
    clf.gaussain_naiv_bayes()
    clf.multinomial_naiv_bayes()

Output would look like:

********************==> LogisticRegression <==********************
Accuracy score:0.8072916666666666
F1_Score:0.8614232209737829
AUC_Score:0.76680015016894
********************==> SVM <==********************
Accuracy score:0.796875
F1_Score:0.8592057761732852
AUC_Score:0.7328869978726066
********************==> SGDClassifier <==********************
Accuracy score:0.4375
F1_Score:0.30769230769230765
AUC_Score:0.5834063321236391
********************==> DecisionTreeClassifier <==********************
Accuracy score:0.7395833333333334
F1_Score:0.8134328358208955
AUC_Score:0.6865223376298335
********************==> AdaBoostClassifier <==********************
Accuracy score:0.7239583333333334
F1_Score:0.7984790874524715
AUC_Score:0.6794518833687899
********************==> RandomForestClassifier <==********************
Accuracy score:0.7760416666666666
F1_Score:0.8377358490566038
AUC_Score:0.7351395319734702
********************==> XGBoostClassifier <==********************
Accuracy score:0.7395833333333334
F1_Score:0.8076923076923077
AUC_Score:0.7040420473032162
********************==> KNeighborsClassifier <==********************
Accuracy score:0.71875
F1_Score:0.798507462686567
AUC_Score:0.6624953072206232
********************==> Gaussian Naiv Bayes <==********************
Accuracy score:0.765625
F1_Score:0.8351648351648351
AUC_Score:0.7056063070954824
********************==> Multinomial Naiv Bayes <==********************
Accuracy score:0.6510416666666666
F1_Score:0.7545787545787546
AUC_Score:0.5734576398448255

If you want's to test you dataset for all classifier algorithm at one call then you have to do this

from classification_algorithm import Classifier
clf = Classifier(x_train, y_train, x_test, y_test)
clf.pipeline()

Output would look like this:

Accuracy score:0.6510416666666666
F1_Score:0.7545787545787546
AUC_Score:0.5734576398448255
LogisticRegression score:0.8072916666666666 auc_score:0.76680015016894
SVM score:0.796875 auc_score:0.7328869978726066
DEcisionTree score:0.734375 auc_score:0.6870854711550494
RandomForest score:0.7708333333333334 auc_score:0.722562883243649
Xgboost score:0.7395833333333334 auc_score:0.7040420473032162
Gaussian_Naiv_Bayes score:0.765625 auc_score:0.7056063070954824
Multinomial_Naiv_Bayes score:0.6510416666666666 auc_score:0.5734576398448255
Best Model for this dataset according to accuracy score is:LogisticRegression 
Best Model for this dataset according to auc_score is:LogisticRegression 

By. Manikant Kumar

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

classification_algorithm-0.1-py3-none-any.whl (3.9 kB view details)

Uploaded Python 3

File details

Details for the file classification_algorithm-0.1-py3-none-any.whl.

File metadata

  • Download URL: classification_algorithm-0.1-py3-none-any.whl
  • Upload date:
  • Size: 3.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.2

File hashes

Hashes for classification_algorithm-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6a12142e8506d2d5fe0741a3715abcf608d2f703854f7306e02026dfafe672b9
MD5 b6641039843e67a5ffe4813a91b9f36d
BLAKE2b-256 8c063896507adbee94f250bc5baf22beeb84814da6b75b09c5cb73cdc75cd610

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page