All classifier algorithm at one place
Project description
All Classifier Algorithm At One Place
This is a package that contains all the best classifier algorithms like
- LogisticRegression
- SVM
- Decision Tree
- Random Forest
- Naiv Bayes
- SGDClassifier
- Xgboost
- Adaboost
- KNN
To access all these classifier you have to implement a simple code rather that importing all these classifier from different package - Provide the x_train,y_train,x_test,y_test value to the Classifier object
- Now call the classifier function
- Note: In case of KNN also provide the n_neighbour value
from classification_algorithm import Classifier
clf = Classifier(x_train, y_train, x_test, y_test)
clf.logisticregression()
clf.svm()
clf.sgdclassifier()
clf.decisiontree()
clf.adaboost()
clf.randomforest()
clf.xgboost()
clf.knn(3)
clf.gaussain_naiv_bayes()
clf.multinomial_naiv_bayes()
Output would look like:
********************==> LogisticRegression <==********************
Accuracy score:0.8072916666666666
F1_Score:0.8614232209737829
AUC_Score:0.76680015016894
********************==> SVM <==********************
Accuracy score:0.796875
F1_Score:0.8592057761732852
AUC_Score:0.7328869978726066
********************==> SGDClassifier <==********************
Accuracy score:0.4375
F1_Score:0.30769230769230765
AUC_Score:0.5834063321236391
********************==> DecisionTreeClassifier <==********************
Accuracy score:0.7395833333333334
F1_Score:0.8134328358208955
AUC_Score:0.6865223376298335
********************==> AdaBoostClassifier <==********************
Accuracy score:0.7239583333333334
F1_Score:0.7984790874524715
AUC_Score:0.6794518833687899
********************==> RandomForestClassifier <==********************
Accuracy score:0.7760416666666666
F1_Score:0.8377358490566038
AUC_Score:0.7351395319734702
********************==> XGBoostClassifier <==********************
Accuracy score:0.7395833333333334
F1_Score:0.8076923076923077
AUC_Score:0.7040420473032162
********************==> KNeighborsClassifier <==********************
Accuracy score:0.71875
F1_Score:0.798507462686567
AUC_Score:0.6624953072206232
********************==> Gaussian Naiv Bayes <==********************
Accuracy score:0.765625
F1_Score:0.8351648351648351
AUC_Score:0.7056063070954824
********************==> Multinomial Naiv Bayes <==********************
Accuracy score:0.6510416666666666
F1_Score:0.7545787545787546
AUC_Score:0.5734576398448255
If you want's to test you dataset for all classifier algorithm at one call then you have to do this
from classification_algorithm import Classifier
clf = Classifier(x_train, y_train, x_test, y_test)
clf.pipeline()
Output would look like this:
Accuracy score:0.6510416666666666
F1_Score:0.7545787545787546
AUC_Score:0.5734576398448255
LogisticRegression score:0.8072916666666666 auc_score:0.76680015016894
SVM score:0.796875 auc_score:0.7328869978726066
DEcisionTree score:0.734375 auc_score:0.6870854711550494
RandomForest score:0.7708333333333334 auc_score:0.722562883243649
Xgboost score:0.7395833333333334 auc_score:0.7040420473032162
Gaussian_Naiv_Bayes score:0.765625 auc_score:0.7056063070954824
Multinomial_Naiv_Bayes score:0.6510416666666666 auc_score:0.5734576398448255
Best Model for this dataset according to accuracy score is:LogisticRegression
Best Model for this dataset according to auc_score is:LogisticRegression
By. Manikant Kumar
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file classification_algorithm-0.1-py3-none-any.whl
.
File metadata
- Download URL: classification_algorithm-0.1-py3-none-any.whl
- Upload date:
- Size: 3.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a12142e8506d2d5fe0741a3715abcf608d2f703854f7306e02026dfafe672b9 |
|
MD5 | b6641039843e67a5ffe4813a91b9f36d |
|
BLAKE2b-256 | 8c063896507adbee94f250bc5baf22beeb84814da6b75b09c5cb73cdc75cd610 |