All classifier algorithm at one place
Project description
All Classifier Algorithm At One Place
This is a package that contains all the best classifier algorithms like
- LogisticRegression
- SVM
- Decision Tree
- Random Forest
- Naiv Bayes
- SGDClassifier
- Xgboost
- Adaboost
- KNN
To access all these classifier you have to implement a simple code rather that importing all these classifier from different package - Provide the x_train,y_train,x_test,y_test value to the Classifier object
- Now call the classifier function
- Note: In case of KNN also provide the n_neighbour value
from classification_algorithm import Classifier clf = Classifier(x_train, y_train, x_test, y_test) clf.logisticregression() clf.svm() clf.sgdclassifier() clf.decisiontree() clf.adaboost() clf.randomforest() clf.xgboost() clf.knn(3) clf.gaussain_naiv_bayes() clf.multinomial_naiv_bayes()
Output would look like:
********************==> LogisticRegression <==******************** Accuracy score:0.8072916666666666 F1_Score:0.8614232209737829 AUC_Score:0.76680015016894 ********************==> SVM <==******************** Accuracy score:0.796875 F1_Score:0.8592057761732852 AUC_Score:0.7328869978726066 ********************==> SGDClassifier <==******************** Accuracy score:0.4375 F1_Score:0.30769230769230765 AUC_Score:0.5834063321236391 ********************==> DecisionTreeClassifier <==******************** Accuracy score:0.7395833333333334 F1_Score:0.8134328358208955 AUC_Score:0.6865223376298335 ********************==> AdaBoostClassifier <==******************** Accuracy score:0.7239583333333334 F1_Score:0.7984790874524715 AUC_Score:0.6794518833687899 ********************==> RandomForestClassifier <==******************** Accuracy score:0.7760416666666666 F1_Score:0.8377358490566038 AUC_Score:0.7351395319734702 ********************==> XGBoostClassifier <==******************** Accuracy score:0.7395833333333334 F1_Score:0.8076923076923077 AUC_Score:0.7040420473032162 ********************==> KNeighborsClassifier <==******************** Accuracy score:0.71875 F1_Score:0.798507462686567 AUC_Score:0.6624953072206232 ********************==> Gaussian Naiv Bayes <==******************** Accuracy score:0.765625 F1_Score:0.8351648351648351 AUC_Score:0.7056063070954824 ********************==> Multinomial Naiv Bayes <==******************** Accuracy score:0.6510416666666666 F1_Score:0.7545787545787546 AUC_Score:0.5734576398448255
If you want's to test you dataset for all classifier algorithm at one call then you have to do this
from classification_algorithm import Classifier clf = Classifier(x_train, y_train, x_test, y_test) clf.pipeline()
Output would look like this:
Accuracy score:0.6510416666666666 F1_Score:0.7545787545787546 AUC_Score:0.5734576398448255 LogisticRegression score:0.8072916666666666 auc_score:0.76680015016894 SVM score:0.796875 auc_score:0.7328869978726066 DEcisionTree score:0.734375 auc_score:0.6870854711550494 RandomForest score:0.7708333333333334 auc_score:0.722562883243649 Xgboost score:0.7395833333333334 auc_score:0.7040420473032162 Gaussian_Naiv_Bayes score:0.765625 auc_score:0.7056063070954824 Multinomial_Naiv_Bayes score:0.6510416666666666 auc_score:0.5734576398448255 Best Model for this dataset according to accuracy score is:LogisticRegression Best Model for this dataset according to auc_score is:LogisticRegression
By. Manikant Kumar
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Built Distribution
Close
Hashes for classification_algorithm-0.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6a12142e8506d2d5fe0741a3715abcf608d2f703854f7306e02026dfafe672b9 |
|
MD5 | b6641039843e67a5ffe4813a91b9f36d |
|
BLAKE2-256 | 8c063896507adbee94f250bc5baf22beeb84814da6b75b09c5cb73cdc75cd610 |