Skip to main content

Module containing various utility functions for classification tasks

Project description

classification_lib

A custom module that grants access to libraries with utility functions for performing classification tasks such as:

  • Plotting precision-recall curves for multiple classifiers for easier comparisons.

  • Plotting ROC curves for multiple classifiers for easier comparisons.

Installation

pip install classification_lib

Get Started

How to plot different pr-curve(s) for classifier(s) using the plot_pr_curve of this library:

from classification_lib import Plots

import numpy as np



# Instantiating the precisions and recalls for two different classifiers

classifier1_precisions = np.sort(0.791 + 0.168 * np.random.randn(794))

classifier2_precisions = np.sort(0.5 + 0.142 * np.random.randn(794))

classifier1_recalls = sorted(0.70 + 0.299 * np.random.randn(794), reverse=True)

classifier2_recalls = sorted(0.3 + 0.5 * np.random.randn(794), reverse=True)

classifier1_name = "Classifier 1"

classifier2_name = "Classifier 2"

classifiers = [(classifier1_name, classifier1_precisions, classifier1_recalls),

               (classifier2_name, classifier2_precisions, classifier2_recalls)]



# Instantiate a Plot object

plot = Plots(classifiers)



# Call the pr_curve_plot method

result = plot.plot_pr_curve()

How to plot different pr-curve(s) for classifier(s) using the plot_roc_curve of this library:

import numpy as np

from classification_lib import Plots



classifier1_false_positive_rate = sorted(0.29 + 0.248 * np.random.randn(219))

classifier2_false_positive_rate = sorted(0.7 + 0.4 * np.random.randn(219))

classifier1_true_positive_rate= sorted(0.788 + 0.2 * np.random.randn(219))

classifier2_true_positive_rate = sorted(0.6 + 0.3 * np.random.randn(219))

classifier1_name = "Classifier 1"

classifier2_name = "Classifier 2"

classifiers = [(classifier1_name, classifier1_false_positive_rate, classifier1_true_positive_rate),

               (classifier2_name, classifier2_false_positive_rate, classifier2_true_positive_rate)]



# Instantiate a Plot object

plot = Plots(classifiers)



# Call the pr_curve_plot method

result = plot.plot_roc_curve()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classification_lib-1.0.0.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

classification_lib-1.0.0-py3-none-any.whl (3.8 kB view details)

Uploaded Python 3

File details

Details for the file classification_lib-1.0.0.tar.gz.

File metadata

  • Download URL: classification_lib-1.0.0.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.0

File hashes

Hashes for classification_lib-1.0.0.tar.gz
Algorithm Hash digest
SHA256 efcac7925a7403ba5d97f94c3b86ba9523429dccceefa216d6adc81a5fe8091a
MD5 c68ae324b61736a31264d247a302ab59
BLAKE2b-256 340d6cd12c147edd1826aa65a92e71f68cde4aec11c69f6e5855ac47c6728f9b

See more details on using hashes here.

File details

Details for the file classification_lib-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for classification_lib-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 89789faae22d91dd3a47ff7baa454a4154fa4cf2a253aec347a5908c93df247f
MD5 bb51b055fa282336d1d1e2e93fc2a646
BLAKE2b-256 8c3dab91b92637ab1897de95a8685bb9312b56060e8cfc1a4e95959176bfa462

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page