Skip to main content

A classification library using a novel audio-inspired algorithm.

Project description

Classification Library

A classification library using a novel audio-inspired technique.

Installation

Try:

pip install classification_library

Except:

pip install git+https://github.com/lol-cubes/classification-library

Usage

from classification_library import AudioClassifier
import numpy as np


X_train = np.array([1, 2, 3, 4])
y_train = np.array([1, 4, 9, 16])
X_test = np.array([5, 6])
y_test = np.array([25, 36])


model = AudioClassifier(alpha=10)
model.fit(X_train, y_train)

predictions = model.predict(X_test)
correct_predictions = 0
for y_true, y_pred in zip(y_test, predictions):
    if y_true == y_pred:
        correct_predictions += 1
print(f"Accuracy: {correct_predictions / len(y_test)}")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classification_library-0.0.3.tar.gz (4.3 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file classification_library-0.0.3.tar.gz.

File metadata

  • Download URL: classification_library-0.0.3.tar.gz
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.2

File hashes

Hashes for classification_library-0.0.3.tar.gz
Algorithm Hash digest
SHA256 9ee77c9e94f23fb48aba4942a0f572fcec870ff682b5e6fdba9916f149f98a16
MD5 09f31c5e3ed1da22784778e3b2dc0a14
BLAKE2b-256 c172488d489232f4d6ee154c5035b2db0f1c37e8e264a0b6d4ab81885e6f1ed2

See more details on using hashes here.

File details

Details for the file classification_library-0.0.3-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for classification_library-0.0.3-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a6b9ea20f3662159f5ea5e9512acbac8db317bf24ec5fa4a434f8314b2c7f029
MD5 d62113a24529bee9334e85fa9e604cfc
BLAKE2b-256 5ab7bf45e75f5818e0c82cbf5e10af852bf1318e0eeaddfdababf3281686c415

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page