Skip to main content

Radiomics-related modules for extraction and experimenting

Project description


ClassyRadiomics

License CI Build codecov

Simple pipeline for experimenting with radiomics features

Streamlit Share

Docker

Python

Demo

docker run -p 8501:8501 -v <your_data_dir>:/data -it piotrekwoznicki/classy-radiomics:0.1 pip install --upgrade classrad

 

Installation from source

git clone https://github.com/pwoznicki/ClassyRadiomics.git
cd ClassyRadiomics
pip install -e .

Example - Hydronephrosis detection from CT images:

Extract radiomics features and save them to CSV table

df = pd.read_csv(table_dir / "paths.csv")
extractor = FeatureExtractor(
    df=df,
    out_path=(table_dir / "features.csv"),
    image_col="img_path",
    mask_col="seg_path",
)
extractor.extract_features()

Create a dataset from the features table

feature_df = pd.read_csv(table_dir / "features.csv")
data = Dataset(
    dataframe=feature_df,
    features=feature_cols,
    target="Hydronephrosis",
    task_name="Hydronephrosis detection"
)
data.cross_validation_split_test_from_column(
    column_name="cohort", test_value="control"
)

Select classifiers to compare

classifier_names = [
    "Gaussian Process Classifier",
    "Logistic Regression",
    "SVM",
    "Random Forest",
    "XGBoost",
]
classifiers = [MLClassifier(name) for name in classifier_names]

Create an evaluator to train and evaluate selected classifiers

evaluator = Evaluator(dataset=data, models=classifiers)
evaluator.evaluate_cross_validation()
evaluator.boxplot_by_class()
evaluator.plot_all_cross_validation()
evaluator.plot_test()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

classrad-0.1.tar.gz (1.3 MB view details)

Uploaded Source

File details

Details for the file classrad-0.1.tar.gz.

File metadata

  • Download URL: classrad-0.1.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/3.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.9.5

File hashes

Hashes for classrad-0.1.tar.gz
Algorithm Hash digest
SHA256 f7428021f58686af95424fafd40aea8b7b04643380dbec505e5885a53f26ca2c
MD5 c99b9a1a43c4e1345855928d6bb57138
BLAKE2b-256 16911d5a002e741e2b770eeb5e70a5fb43c3dece7f9fc908b107115ef9607227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page