Skip to main content

CLE Loads Everything (at least, many binary formats!) and provides a pythonic interface to analyze what they are and what they would look like in memory.

Project description

CLE

Latest Release Python Version PyPI Statistics License

CLE loads binaries and their associated libraries, resolves imports and provides an abstraction of process memory the same way as if it was loader by the OS's loader.

Project Links

Project repository: https://github.com/angr/cle

Documentation: https://api.angr.io/projects/cle/en/latest/

Installation

pip install cle

Usage example

>>> import cle
>>> ld = cle.Loader("/bin/ls")
>>> hex(ld.main_object.entry)
'0x4048d0'
>>> ld.shared_objects
{'ld-linux-x86-64.so.2': <ELF Object ld-2.21.so, maps [0x5000000:0x522312f]>,
 'libacl.so.1': <ELF Object libacl.so.1.1.0, maps [0x2000000:0x220829f]>,
 'libattr.so.1': <ELF Object libattr.so.1.1.0, maps [0x4000000:0x4204177]>,
 'libc.so.6': <ELF Object libc-2.21.so, maps [0x3000000:0x33a1a0f]>,
 'libcap.so.2': <ELF Object libcap.so.2.24, maps [0x1000000:0x1203c37]>}
>>> ld.addr_belongs_to_object(0x5000000)
<ELF Object ld-2.21.so, maps [0x5000000:0x522312f]>
>>> libc_main_reloc = ld.main_object.imports['__libc_start_main']
>>> hex(libc_main_reloc.addr)       # Address of GOT entry for libc_start_main
'0x61c1c0'
>>> import pyvex
>>> some_text_data = ld.memory.load(ld.main_object.entry, 0x100)
>>> irsb = pyvex.lift(some_text_data, ld.main_object.entry, ld.main_object.arch)
>>> irsb.pp()
IRSB {
   t0:Ity_I32 t1:Ity_I32 t2:Ity_I32 t3:Ity_I64 t4:Ity_I64 t5:Ity_I64 t6:Ity_I32 t7:Ity_I64 t8:Ity_I32 t9:Ity_I64 t10:Ity_I64 t11:Ity_I64 t12:Ity_I64 t13:Ity_I64 t14:Ity_I64

   15 | ------ IMark(0x4048d0, 2, 0) ------
   16 | t5 = 32Uto64(0x00000000)
   17 | PUT(rbp) = t5
   18 | t7 = GET:I64(rbp)
   19 | t6 = 64to32(t7)
   20 | t2 = t6
   21 | t9 = GET:I64(rbp)
   22 | t8 = 64to32(t9)
   23 | t1 = t8
   24 | t0 = Xor32(t2,t1)
   25 | PUT(cc_op) = 0x0000000000000013
   26 | t10 = 32Uto64(t0)
   27 | PUT(cc_dep1) = t10
   28 | PUT(cc_dep2) = 0x0000000000000000
   29 | t11 = 32Uto64(t0)
   30 | PUT(rbp) = t11
   31 | PUT(rip) = 0x00000000004048d2
   32 | ------ IMark(0x4048d2, 3, 0) ------
   33 | t12 = GET:I64(rdx)
   34 | PUT(r9) = t12
   35 | PUT(rip) = 0x00000000004048d5
   36 | ------ IMark(0x4048d5, 1, 0) ------
   37 | t4 = GET:I64(rsp)
   38 | t3 = LDle:I64(t4)
   39 | t13 = Add64(t4,0x0000000000000008)
   40 | PUT(rsp) = t13
   41 | PUT(rsi) = t3
   42 | PUT(rip) = 0x00000000004048d6
   43 | t14 = GET:I64(rip)
   NEXT: PUT(rip) = t14; Ijk_Boring
}

Valid options

For a full listing and description of the options that can be provided to the loader and the methods it provides, please examine the docstrings in cle/loader.py. If anything is unclear or poorly documented (there is much) please complain through whatever channel you feel appropriate.

Loading Backends

CLE's loader is implemented in the Loader class. There are several backends that can be used to load a single file:

  • ELF, as its name says, loads ELF binaries. ELF files loaded this way are statically parsed using PyElfTools.

  • PE is a backend to load Microsoft's Portable Executable format, effectively Windows binaries. It uses the (optional) pefile module.

  • Mach-O is a backend to load, you guessed it, Mach-O binaries. Support is limited for this backend.

  • Blob is a backend to load unknown data. It requires that you specify the architecture it would be run on, in the form of a class from ArchInfo.

Which backend you use can be specified as an argument to Loader. If left unspecified, the loader will pick a reasonable default.

Finding shared libraries

  • If the auto_load_libs option is set to False, the Loader will not automatically load libraries requested by loaded objects. Otherwise...

  • The loader determines which shared objects are needed when loading binaries, and searches for them in the following order:

    • in the current working directory
    • in folders specified in the ld_path option
    • in the same folder as the main binary
    • in the system (in the corresponding library path for the architecture of the binary, e.g., /usr/arm-linux-gnueabi/lib for ARM, note that you need to install cross libraries for this, e.g., libc6-powerpc-cross on Debian - needs emdebian repos)
    • in the system, but with mismatched version numbers from what is specified as a dependency, if the ignore_import_version_numbers option is True
  • If no binary is found with the correct architecture, the loader raises an exception if except_missing_libs option is True. Otherwise it simply leaves the dependencies unresolved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cle-9.2.108.tar.gz (184.2 kB view details)

Uploaded Source

Built Distribution

cle-9.2.108-py3-none-any.whl (189.1 kB view details)

Uploaded Python 3

File details

Details for the file cle-9.2.108.tar.gz.

File metadata

  • Download URL: cle-9.2.108.tar.gz
  • Upload date:
  • Size: 184.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cle-9.2.108.tar.gz
Algorithm Hash digest
SHA256 e031b53c4a68e6f8e1c9dc6808137bff25fa544703c3c7340732758dcda7f04a
MD5 594ebb7de3af0f81ff49fbbf78928570
BLAKE2b-256 7c8da92e74fef616467fc4f338a3a640bc197ccc06e61958d32d1c4672f123d5

See more details on using hashes here.

File details

Details for the file cle-9.2.108-py3-none-any.whl.

File metadata

  • Download URL: cle-9.2.108-py3-none-any.whl
  • Upload date:
  • Size: 189.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for cle-9.2.108-py3-none-any.whl
Algorithm Hash digest
SHA256 250eb1e978d94ca1cf2ab263e7de78362d635ad6dc33b08b985b7ff306fdcd8b
MD5 b1c8d46bb19bfba3076d574a052485e2
BLAKE2b-256 8efc7a3108059805c01def4982ff7ecf9fa7a9e200b4f4714720ae6f1b31352f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page