Skip to main content

Functions to preprocess and normalize text.

Project description

clean-text Build Status PyPI PyPI - Python Version PyPI - Downloads

User-generated content on the Web and in social media is often dirty. Preprocess your scraped data with clean-text to create a normalized text representation. For instance, turn this corrupted input:

A bunch of \\u2018new\\u2019 references, including [Moana](https://en.wikipedia.org/wiki/Moana_%282016_film%29).


»Yóù àré     rïght <3!«

into this clean output:

A bunch of 'new' references, including [moana](<URL>).

"you are right <3!"

clean-text uses ftfy, unidecode and numerous hand-crafted rules, i.e., RegEx.

Installation

To install the GPL-licensed package unidecode alongside:

pip install clean-text[gpl]

You may want to abstain from GPL:

pip install clean-text

NB: This package is named clean-text and not cleantext.

If unidecode is not available, clean-text will resort to Python's unicodedata.normalize for transliteration. Transliteration to closest ASCII symbols involes manually mappings, i.e., ê to e. unidecode's mapping is superiour but unicodedata's are sufficent. However, you may want to disable this feature altogether depending on your data and use case.

To make it clear: There are inconsistencies between processing text with or without unidecode.

Usage

from cleantext import clean

clean("some input",
    fix_unicode=True,               # fix various unicode errors
    to_ascii=True,                  # transliterate to closest ASCII representation
    lower=True,                     # lowercase text
    no_line_breaks=False,           # fully strip line breaks as opposed to only normalizing them
    no_urls=False,                  # replace all URLs with a special token
    no_emails=False,                # replace all email addresses with a special token
    no_phone_numbers=False,         # replace all phone numbers with a special token
    no_numbers=False,               # replace all numbers with a special token
    no_digits=False,                # replace all digits with a special token
    no_currency_symbols=False,      # replace all currency symbols with a special token
    no_punct=False,                 # remove punctuations
    replace_with_punct="",          # instead of removing punctuations you may replace them
    replace_with_url="<URL>",
    replace_with_email="<EMAIL>",
    replace_with_phone_number="<PHONE>",
    replace_with_number="<NUMBER>",
    replace_with_digit="0",
    replace_with_currency_symbol="<CUR>",
    lang="en"                       # set to 'de' for German special handling
)

Carefully choose the arguments that fit your task. The default parameters are listed above.

You may also only use specific functions for cleaning. For this, take a look at the source code.

So far, only English and German are fully supported. It should work for the majority of western languages. If you need some special handling for your language, feel free to contribute. 🙃

Development

Install and use poetry.

Contributing

If you have a question, found a bug or want to propose a new feature, have a look at the issues page.

Pull requests are especially welcomed when they fix bugs or improve the code quality.

If you don't like the output of clean-text, consider adding a test with your specific input and desired output.

Related Work

Acknowledgements

Built upon the work by Burton DeWilde for Textacy.

License

Apache

Sponsoring

This work was created as part of a project that was funded by the German Federal Ministry of Education and Research.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clean-text-0.5.0.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

clean_text-0.5.0-py3-none-any.whl (9.8 kB view details)

Uploaded Python 3

File details

Details for the file clean-text-0.5.0.tar.gz.

File metadata

  • Download URL: clean-text-0.5.0.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Darwin/20.6.0

File hashes

Hashes for clean-text-0.5.0.tar.gz
Algorithm Hash digest
SHA256 e525951bef0c8b72e03c987fdac2c475b61d7debf7a8834366fd75716179b6e1
MD5 d1e3b41937fb5dfc4ed2f3294304d76f
BLAKE2b-256 36f62eaafd01f7638e932141b762a7ab8a62a57b6b2dd9495fec8a032a5d02d7

See more details on using hashes here.

File details

Details for the file clean_text-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: clean_text-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 9.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.9.6 Darwin/20.6.0

File hashes

Hashes for clean_text-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b83f39c72189a6e9c1356e31079cdcedc67d8e31e90cde788e60680ea0704afd
MD5 55cad93c09ebc943b235ccdea4220745
BLAKE2b-256 8e1facc62e76dddb52e56d8e6ef20377e3e26976e4ad3ded582b1ff1d18505d7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page