Skip to main content

Python library to process company names

Project description

cleanco - clean organization names

Python package CodeQL

What is it / what does it do?

This is a Python package that processes company names, providing cleaned versions of the names by stripping away terms indicating organization type (such as "Ltd." or "Corp").

Using a database of organization type terms, It also provides an utility to deduce the type of organization, in terms of US/UK business entity types (ie. "limited liability company" or "non-profit").

Finally, the system uses the term information to suggest countries the organization could be established in. For example, the term "Oy" in company name suggests it is established in Finland, whereas "Ltd" in company name could mean UK, US or a number of other countries.

How do I install it?

Just use 'pip install cleanco' if you have pip installed (as most systems do). Or download the zip distribution from this site, unzip it and then:

  • Mac: cd into it, and enter sudo python setup.py install along with your system password.
  • Windows: Same thing but without sudo.

How does it work?

Let's look at some sample code. To get the base name of a business without legal suffix:

>>> from cleanco import basename
>>> business_name = "Some Big Pharma, LLC"
>>> basename(business_name)
>>> 'Some Big Pharma'

Note that sometimes a name may have e.g. two different suffixes after one another. The cleanco term data covers many of these, but you may want to run basename() twice on the name, just in case.

If you want to use your custom terms, please see custom_basename() that also provides some other ways to adjust how base name is produced.

To get the business type or country:

>>> from cleanco import typesources, matches
>>> classification_sources = typesources()
>>> matches("Some Big Pharma, LLC", classification_sources)
['Limited Liability Company']

To get the possible countries of jurisdiction:

>>> from cleanco import countrysources, matches
>>> classification_sources = countrysources()
>>> matches("Some Big Pharma, LLC", classification_sources) ´
['United States of America', 'Philippines']

Are there bugs?

See the issue tracker. If you find a bug or have enhancement suggestion or question, please file an issue and provide a PR if you can. For example, some of the company suffixes may be incorrect or there may be suffixes missing.

To run tests, simply install the package and run python setup.py test. To run tests on multiple Python versions, install tox and run it (see the provided tox.ini).

Special thanks to:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cleanco-2.3.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

cleanco-2.3-py3-none-any.whl (11.1 kB view details)

Uploaded Python 3

File details

Details for the file cleanco-2.3.tar.gz.

File metadata

  • Download URL: cleanco-2.3.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for cleanco-2.3.tar.gz
Algorithm Hash digest
SHA256 26b899b2be871be288408205686c5a1dd5f3ab085b709d041a77f3e3049d2961
MD5 9ab6944a929704ce637783f2d48f1f13
BLAKE2b-256 e9e10b7b567c915ef1d619713b0caee14041536814767bad0c30b5e6542a40c9

See more details on using hashes here.

File details

Details for the file cleanco-2.3-py3-none-any.whl.

File metadata

  • Download URL: cleanco-2.3-py3-none-any.whl
  • Upload date:
  • Size: 11.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.3

File hashes

Hashes for cleanco-2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 7ab4672cdfdabe2375a608686da86005b33df6f347ebf7849c9d0e2651f27e01
MD5 0faaabae1d83113d6b10a95d25a117ac
BLAKE2b-256 f84ee4a24eec01fbfda0df23582bc9be5d8c32b324d79481edf6d1ff52b03733

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page