Skip to main content

ClearConf is a library created to support easy and manageble python configuration. It consists in a CLI tool to manage the configuration directory, and in a python class (BaseConfig) which adds additional functionalities to a configuration class.

Project description

clearconf

ClearConf is a library created to support easy and manageble python configuration. It consists in a CLI tool to manage configuration and in a python class (BaseConfig) which adds additional functionalities to a configuration class.

Installation

To install ClearConf just run

pip install clearconf

Usage

The first step to use clearconf would be to use the CLI tool in the root of your project to initialize it:

cconf init

This will generate a config directory where you will store your configurations and a .clearconf file used by ClearConf to keep track of configurations. After this you can start populating your config directory. You can find examples of configuration files in the Example section.

❗ClearConf recursively recognize as configuration all python files ending with _conf

Finally you can import a generic configuration in your script as

from configs import Config

and use it as you please.

When the script is run, if a default configuration has been set via the CLI

cconf defaults add main.py test_conf.py

such configuration will be dynamically imported.

Otherwise, clearconf will list all the available configuration and ask you to pick one.

0: example3_conf
1: example1_conf
2: example2_conf
3: example4_conf
Choose a configuration file:

CLI

For more informations on the command line interface check the related README here

Examples

Example 1

A configuration file for machine learning could be structure as follow.

from models import MLP
from datasets import ImageNet


class Config(BaseConfig):
    seed = 1234

    class Model:
        architecture = MLP

        class Params:
            num_layers = 16
            layers_dim = [96] * num_layers


    class Data:
        dataset = ImageNet

        class Params:
            root = './data/PCN'
            split = 'PCN.json'
            subset = 'train'

The training/test script could read the configuration as follows:

from configs import Config

Model = Config.Model
Data = Config.Data

model = Model.architecture(**Model.Params.to_dict())
dataset = Data.dataset(**Data.Params.to_dict())

Example 2

It is also possible to simplify the configuration further using inheritance. For example the Model configuration seen before would look like this:

from models import MLP

class Config(BaseConfig):
    seed = 1234

    class Model(MLP):

        class Params:
            num_layers = 16
            layers_dim = [96] * num_layers

The corresponding scirp is:

from configs import Config

Model = Config.Model
model = Model(**Model.Params.to_dict())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clearconf-0.3.17.tar.gz (9.3 kB view details)

Uploaded Source

Built Distribution

clearconf-0.3.17-py3-none-any.whl (12.9 kB view details)

Uploaded Python 3

File details

Details for the file clearconf-0.3.17.tar.gz.

File metadata

  • Download URL: clearconf-0.3.17.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.12 Linux/5.19.0-45-generic

File hashes

Hashes for clearconf-0.3.17.tar.gz
Algorithm Hash digest
SHA256 f635ca3d27a6802c0a99271af8f2442f31e4793ad7adf3b3a5a2b281337ba641
MD5 f4987ce79ff8a4b1a5d51549835be26b
BLAKE2b-256 9e3d56ab41a86cf78a25c43e140c36aece51f3421efe4dca8d22db9c7c8a7dc2

See more details on using hashes here.

File details

Details for the file clearconf-0.3.17-py3-none-any.whl.

File metadata

  • Download URL: clearconf-0.3.17-py3-none-any.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.12 Linux/5.19.0-45-generic

File hashes

Hashes for clearconf-0.3.17-py3-none-any.whl
Algorithm Hash digest
SHA256 4047efbce796242de6d248a3a8e8deef2aefcda446624dd44b57d1b2936a2da5
MD5 52785e9e0727fef470734b2a27f4f9a8
BLAKE2b-256 46a0615c9434553dd1ac8a135ab64e623be5f715e0ee07bd50c93f8b962126c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page