Skip to main content

CLuster Expansion in Atomistic Simulation Environment

Project description

CLEASE

coverage PyPI version Conda Documentation Status

CLuster Expansion in Atomic Simulation Environment (CLEASE) is a package that automates the cumbersome setup and construction procedure of cluster expansion (CE). It provides a comprehensive list of tools for specifying parameters for CE, generating training structures, fitting effective cluster interaction (ECI) values and running Monte Carlo simulations. A detailed description of the package can be found in the documentation and our paper.

Installation

Install the CLEASE code by executing

pip install clease

Alternative, CLEASE is also available through anaconda on conda via conda-forge. We recommend installing CLEASE via conda on windows machines in order to simplify compilations, as pip tends to have a hard time compiling the C++ code. Install into your conda environment:

conda install -c conda-forge clease

Development

If you are a developer you might want to install CLEASE by executing the following command in the root folder of the project

pip install -e .

In order to run the tests, the testing dependencies should be installed. They can be installed with the extra test option

pip install .[test]

There is an additional option for development purposes, dev, which contains some convenience packages. All of the extras options can be installed via the all option, i.e.

pip install .[all]

Note, that if you are using zsh, you need to escape the argument, e.g.

pip install '.[all]'

Graphical User Interface

Clease has a stand-alone jupyter notebook GUI, which is capable of performing most of the standard CE routines. It can be found here.

For simplicity, it can also be installed with pip install clease[gui].

Troubleshooting

  1. If you are running on Mac and get the error
fatal error: 'ios' file not found

try this before installing

export MACOSX_DEPLOYMENT_TARGET=10.14

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clease-0.10.8.tar.gz (357.0 kB view details)

Uploaded Source

Built Distributions

clease-0.10.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

clease-0.10.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

clease-0.10.8-cp38-cp38-win_amd64.whl (292.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

clease-0.10.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

clease-0.10.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

clease-0.10.8-cp38-cp38-macosx_10_15_x86_64.whl (324.0 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

clease-0.10.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

clease-0.10.8-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

clease-0.10.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

clease-0.10.8-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl (1.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

File details

Details for the file clease-0.10.8.tar.gz.

File metadata

  • Download URL: clease-0.10.8.tar.gz
  • Upload date:
  • Size: 357.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for clease-0.10.8.tar.gz
Algorithm Hash digest
SHA256 05afbcc7bf189d9af0a063469b35b0386510f2118cbf5ea8b85076d4e2650c27
MD5 29f851c06ff74de036d7e8e1dd5e9931
BLAKE2b-256 d47ada547b66a8a5d62e36eee47c389b027bba0571019ae877051ca210e5a0e6

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e212a845691e6ec3d942c0a500ec59e378169217957d40749359bec86f07a98b
MD5 648b53fcf90b3942dab6370fbe8e7785
BLAKE2b-256 badb673e838863aa020a3f2d2782ea18de597521040c52f8e8f0dcd5d07d80f9

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 de3492ed03e45906157c16499d300cd1c50672dcc390818314afdd293e69c5db
MD5 1475147ecf32cb1e7aaa7626e6d09360
BLAKE2b-256 a9021b0118cfb49b45d630c37fb7873ec06463395144fba3698b4b5b8c553862

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: clease-0.10.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 292.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for clease-0.10.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9195d59979e9bf5f9eb37ae36eec726bd7778c6c288192a739bcf56b0233028d
MD5 e8d14b24931cd4d9f31390f19a8f0809
BLAKE2b-256 fc8bff47ab73a658a88bf7d3719c9c0a45d5bcaec0d495669cf64eb384f71cd6

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 058c8822a49cbc20fb271051ad43de4ecd6d172daf3c0e1ce3a42d7ce1e7f3e1
MD5 5cd510da0ab558ea4135f35363d00e2e
BLAKE2b-256 e79360d010b046a4f47911467ced8799984b47908edc2f03dd84d21e1a1b3051

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6eacea23e53fcacf19a68bd133c52ed6a3f290e9fea690f5ceab8b9d3d97315d
MD5 d40645532b796e0736dc48b832968efe
BLAKE2b-256 ec1b91a950cb8369e6d38786262b1f099e67522001c6bfccfffd9441c37be666

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

  • Download URL: clease-0.10.8-cp38-cp38-macosx_10_15_x86_64.whl
  • Upload date:
  • Size: 324.0 kB
  • Tags: CPython 3.8, macOS 10.15+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for clease-0.10.8-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 189b6bddb27fbeb95812eea6ab74479b91340f93097c71accc5a9cb93d9a3a70
MD5 f4d1a3619ea130395b884b7475c080c7
BLAKE2b-256 1396164ec767bf6d404ee336a1c4a26a2c1b1966cec57f14471eb75dedf661e4

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3dee84315d1395dcecb60a83fa0876e4e5019438866f1e1c2e3d238da59d4074
MD5 89d635129e4dda5fc56ace644d4bebd0
BLAKE2b-256 369a16560b51eea4dd32133f02dde976047f83cfa0cf3d4c2006b309a2dd83f4

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ff0933e3546b2fdd4fe5891c54a23c41f3f78539e69e8af55cdde3df50f95ab4
MD5 b8afb4e3525208e9498e71ce42d26b31
BLAKE2b-256 148f3a48c717a7d22213d08548d9e3941db3c2a73dc7d9e015d7da54ede34444

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 71e31f1d376aef0b7e5c0bacea38da000ad93c5ba4f575a79e4b8935fc6c97fe
MD5 4c7671941181dae4d1918773481c7fe0
BLAKE2b-256 b62ecc3b792e9f00e2d926ecb134cab5b3216a70d1484a80a89cf6eadf1dcee5

See more details on using hashes here.

File details

Details for the file clease-0.10.8-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for clease-0.10.8-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5eed43a6f8a04fe914489835802f44451a9289329410bba1230b485a9cec7b4c
MD5 ade07f99b053905fc25477d4ac09eb0d
BLAKE2b-256 f59d379507da14154b52fb6a9bebefb292eb33769ae5422726aab08de66a769a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page