Python обертка для запросов в БД Clickhouse
Project description
Python wrapper for database queries Clickhouse
The wrapper is done around clickhouse-driver
Written in python version 3.5
Installation
pip install clickhousepy
or
pip install clickhousepy[pandas] (for installation pandas)
Getting Data from Clickhouse in Pandas Dataframe Format
from clickhousepy import Client
import datetime as dt
TEST_DB = "__chpytest12345"
TEST_TABLE = "__chpytest12345"
client.create_db(TEST_DB)
client.create_table_mergetree(
TEST_DB, TEST_TABLE,
columns=[("i", "UInt32")], # or ["i UInt32"]
orders=["i"],
)
client.insert(
TEST_DB, TEST_TABLE,
[{"i": 1}, {"i": 2}],
)
query = "SELECT i FROM {}.{}".format(TEST_DB, TEST_TABLE)
r = client.get_df(query, columns_names=["Col Integer"])
print(r)
Brief documentation of some methods
from clickhousepy import Client
import datetime as dt
TEST_DB = "__chpytest12345"
TEST_TABLE = "__chpytest12345"
client = Client(host="", user="", password="")
r = client.show_databases()
print("list of databases:", r)
client.create_db(TEST_DB)
client.create_table_mergetree(
TEST_DB, TEST_TABLE,
columns=[("s", "String")],
orders=["s"],
)
# Inserting data.
# Read more about it here
# https://clickhouse-driver.readthedocs.io/en/latest/quickstart.html#inserting-data
client.insert(
TEST_DB, TEST_TABLE,
[{"s": "1"}],
)
r = client.exists(TEST_DB, TEST_TABLE)
print("does the table exist?", r)
r = client.get_count_rows(TEST_DB, TEST_TABLE)
print("number of lines:", r)
# Any request.
r = client.execute("SELECT * FROM {}.{}".format(TEST_DB, TEST_TABLE))
print(r)
Class DB
db = client.DB(TEST_DB)
r = db.show_tables()
print("list of database tables {}:".format(TEST_DB), r)
db.drop_db()
Class Table
db = client.create_db(TEST_DB)
table = db.create_table_mergetree(
TEST_TABLE,
columns=[("s", "String"), ("t", "String"), ("d", "Date")],
orders=["d"],
partition=["s", "d"],
)
# Initialization of an existing table.
# table = client.Table(TEST_DB, TEST_TABLE)
r = table.show_create_table()
print("table creation description", r)
r = table.describe()
print("table columns", r)
table.insert(
[
{"s": "1", "t": "1", "d": dt.datetime(2000, 1, 1)},
{"s": "2", "t": "2", "d": dt.datetime(2000, 1, 2)},
{"s": "3", "t": "3", "d": dt.datetime(2000, 1, 3)},
{"s": "4", "t": "4", "d": dt.datetime(2000, 1, 4)},
],
columns=["s", "t", "d"],
)
data = table.select()
print("First 10 rows of the table", data)
data = table.select(limit=1, columns=["s"], where="s = 2")
print("Filtered sampling", data)
r = table.get_count_rows()
print("number of lines:", r)
r = table.get_min_date(date_column_name="d")
print("minimum date:", r)
r = table.get_max_date(date_column_name="d")
print("maximum date:", r)
print("deleting partitions")
table.drop_partitions([["3", "2000-01-03"], ["4", "2000-01-04"]])
r = table.get_count_rows()
print("number of lines after deleting partitions:", r)
print("row update mutation")
table.update(update="t = '20' ", where="t = '2' ")
print("row deletion mutation")
table.delete(where="t = '20'")
time.sleep(1)
r = table.get_count_rows()
print("number of lines after mutation of line deletion:", r)
print("clear table")
table.truncate()
r = table.get_count_rows()
print("number of rows after clearing the table:", r)
new_table_name = TEST_TABLE + "_new"
print("rename table {} в {}".format(TEST_TABLE, new_table_name))
table.rename(TEST_DB, new_table_name)
r = client.exists(TEST_DB, TEST_TABLE)
print("does table {} exist?".format(TEST_TABLE), r)
print("drop tables")
table.drop_table()
print("deleting a database")
db.drop_db()
Method of copying data from one table to another with checking the number of rows after copying
client.drop_db(TEST_DB)
db = client.create_db(TEST_DB)
table = db.create_table_mergetree(
TEST_TABLE,
columns=[("string", "String"), ("integer", "UInt32"), ("dt", "DateTime")],
orders=["string"],
partition=["string"],
)
table.insert(
[
{"string": "a", "integer": 1, "dt": dt.datetime(2000, 1, 1)},
{"string": "b", "integer": 2, "dt": dt.datetime(2000, 1, 2)},
{"string": "c", "integer": 3, "dt": dt.datetime(2000, 1, 3)},
{"string": "c", "integer": 3, "dt": dt.datetime(2000, 1, 3)},
],
)
table_name_2 = TEST_TABLE + "_copy"
table2 = table.copy_table(TEST_DB, table_name_2, return_new_table=True)
is_identic = table2.copy_data_from(
TEST_DB, TEST_TABLE,
where="string != 'c' ",
columns=["string"]
)
# The function will return a bool value, whether the number of lines matches or not, after copying.
assert is_identic
A method of copying data from one table to another while removing duplicate rows.
client.drop_db(TEST_DB)
db = client.create_db(TEST_DB)
table = db.create_table_mergetree(
TEST_TABLE,
columns=[("string", "String"), ("integer", "UInt32"), ("dt", "DateTime")],
orders=["string"],
partition=["string"],
)
table.insert(
[
{"string": "a", "integer": 1, "dt": dt.datetime(2000, 1, 1)},
{"string": "b", "integer": 2, "dt": dt.datetime(2000, 1, 2)},
{"string": "c", "integer": 3, "dt": dt.datetime(2000, 1, 3)},
{"string": "c", "integer": 3, "dt": dt.datetime(2000, 1, 3)},
],
)
table_name_2 = TEST_TABLE + "_copy"
table2 = table.copy_table(TEST_DB, table_name_2, return_new_table=True)
# When removing duplicate rows (distinct = True),
# there will be no check for the number of rows after copying.
table2.copy_data_from(
TEST_DB, TEST_TABLE,
columns=["string"],
distinct=True
)
assert 3 == table2.get_count_rows()
Dependencies
- clickhouse-driver
- pandas (Optional)
Author
Pavel Maksimov
You can contact me at Telegram, Facebook
Удачи тебе, друг! Поставь звездочку ;)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
clickhousepy-2021.3.10.tar.gz
(12.6 kB
view details)
File details
Details for the file clickhousepy-2021.3.10.tar.gz
.
File metadata
- Download URL: clickhousepy-2021.3.10.tar.gz
- Upload date:
- Size: 12.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.8.0 tqdm/4.45.0 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9525820fef6ecc241241c6585bd9d2e1a47d80d57c7a21ffde8a650ba16d9179 |
|
MD5 | b2ec7eab7a8758a1f6e4056c5e56191d |
|
BLAKE2b-256 | cc2b7ed9f4ab42fded4a6949a6619cf71ed7fb7791e3409d1f0a240a93e6a030 |