Skip to main content

Metric Optimization Engine

Project description

Client side code for MOE.

Install MOE with docker and call it using python REST interface

See https://github.com/Yelp/MOE/issues/461

[MOE](https://github.com/Yelp/MOE) A global, black box optimization engine for real world metric optimization.

## Install pip install git+https://github.com/mulyoved/clientMOE.git@master

## Eaxmples * python [start_moe_example.py](https://github.com/mulyoved/clientMOE/blob/master/start_moe_example.py) * jupyter notebook [example.ipynb](https://github.com/mulyoved/clientMOE/blob/master/jupyter-examples/example.ipynb)

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clientMOE-0.1.zip (225.2 kB view details)

Uploaded Source

File details

Details for the file clientMOE-0.1.zip.

File metadata

  • Download URL: clientMOE-0.1.zip
  • Upload date:
  • Size: 225.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for clientMOE-0.1.zip
Algorithm Hash digest
SHA256 5aa16e4129d08512f4df734e2328f57c3ee7c8475e84260cc24dd0bb48b032b6
MD5 ad534f8ccdf9666bbaeb34620d2cc053
BLAKE2b-256 715705228accd2f3107e8bca2d126155ee46aa30e9d95d104ec1a51cbee96606

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page