Skip to main content

Obtain the climatology and anomalies only for monthly data.

Project description

GitHub last commit GitHub commit activity GitHub contributors PyPI GitHub pull requests GitHub repo size GitHub top language

Climatology and Anomalies in Python

Overview

This code provides experimental and simples tools for differents operations on climate data, mainly obtaining climatologies and anomalies values, in addition to others operations such as data extraction from continent, ocean or a shapefile.

Pip install

pip install clima_anom

Manual installation

clone clima_anom and install in exists or new conda env.

  1. Clone repo and install
git clone https://github.com/mhacarthur/clima_anom.git
cd clima_anom
pip install .

Dependencies

  • Python >= 3.5
  • cartopy == 0.18.0
  • netcdf4 == 1.5.7
  • pyshp == 2.1.3
  • Option: Linux
  1. How to install dependencies
# cartopy
conda install -c conda-forge cartopy
# netcdf4
conda install netcdf4
# pyshp
pip install pyshp

Data

The data use for examples is in directory data. For complete data see:

TRMM Precipitation L3 daily 0.25x0.25 V7

Example

Read data

import os
import clima_anom as ca

data_dir = '..'+os.sep+'data'+os.sep+'3B42_199901_201212.nc'
data = ca.read_netcdf(data_dir,2)

lat = data['lat']
lon = data['lon']
pre = data['prec']

pre_dictionary = ca.data_dictionary(pre)

Colorbar example

import clima_anom as ca
import matplotlib.pyplot as plt

cmap = plt.cm.Spectral_r
cmap_midle_white = ca.colorbar_middle_white(cmap,'middle')
colorbar1
colorbar2

Remove ocean or continent

import numpy as np
import clima_anom as ca

data_dir = '..'+os.sep+'data'+os.sep+'3B42_199901_201212_climatology.nc'
data = ca.read_netcdf(data_dir,2)
lat = data['lat']
lon = data['lon']
pre = data['pre']

pre_continent = ca.remove_continent_ocean(pre,lat,lon,'continent')
pre_ocen = ca.remove_continent_ocean(pre,lat,lon,'ocean')
Wind remove mask

Extract data using shapefile

import clima_anom as ca
import cartopy.io.shapereader as shpreader

file_shape = '..'+os.sep+'shapefile'+os.sep+''+os.sep+'Amazonas.shp'
amazonas = list(shpreader.Reader(file_shape).geometries())

data_dir = '..'+os.sep+'data'+os.sep+'3B42_199901_201212_climatology.nc'
data = ca.read_netcdf(data_dir,2)
lat = data['lat']
lon = data['lon']
pre = data['pre']

pre_amazonas = ca.extract_shapefile('..'+os.sep+'shapefile'+os.sep+'Amazonas.shp',pre,lat,lon,0)
Shapefile

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clima_anom-0.7.8.tar.gz (12.5 kB view details)

Uploaded Source

File details

Details for the file clima_anom-0.7.8.tar.gz.

File metadata

  • Download URL: clima_anom-0.7.8.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for clima_anom-0.7.8.tar.gz
Algorithm Hash digest
SHA256 73dfefe275f9deff4dac883793f36a829cc5f8b0f2e12c4f730c1a0f07feb856
MD5 6ccca10d2ed10dd3cf5da640b7cb0f0c
BLAKE2b-256 7a25395464e7d8f9d3a525e6f0763c794f61ebbf7fd0bb8a1700b6a09f2ed9ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page