Skip to main content

Obtain the climatology and anomalies only for monthly data.

Project description

GitHub last commit GitHub commit activity GitHub contributors PyPI GitHub pull requests GitHub repo size GitHub top language

Climatology and Anomalies in Python

Overview

This code provides experimental and simples tools for differents operations on climate data, mainly obtaining climatologies and anomalies values, in addition to others operations such as data extraction from continent, ocean or a shapefile.

Pip install

pip install clima-anom

Manual installation

clone clima_anom and install in exists or new conda env.

  1. Clone repo and install
git clone https://github.com/mhacarthur/clima_anom.git
cd clima_anom
pip install .

Dependencies

  • Python >= 3.5
  • cartopy == 0.18.0
  • netcdf4 == 1.5.7
  • pyshp == 2.1.3
  • Option: Linux
  1. How to install dependencies
# cartopy
conda install -c conda-forge cartopy
# netcdf4
conda install netcdf4
# pyshp
pip install pyshp

Data

The data use for examples is in directory data. For complete data see:

TRMM 3B42-v7 daily

Example

import os
import clima_anom as ca

data_dir = '..'+os.sep+'data'+os.sep+'3B42_199901_201212.nc'
data = ca.read_netcdf(data_dir,2)

lat = data['lat']
lon = data['lon']
pre = data['prec']

pre_dictionary = ca.data_dictionary(pre)

Figures

Montlhy climatology for rainfall

Monthly_Climatology

Colorbar example

colorbar1
colorbar2

Sesonal climatology for rainfall

Seasonal Climatology

Remove a specific ocean or continent for rainfall

Wind remove mask

Extract information with a shapefile

Shapefile

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clima_anom-0.7.3.tar.gz (12.3 kB view details)

Uploaded Source

Built Distribution

clima_anom-0.7.3-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file clima_anom-0.7.3.tar.gz.

File metadata

  • Download URL: clima_anom-0.7.3.tar.gz
  • Upload date:
  • Size: 12.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for clima_anom-0.7.3.tar.gz
Algorithm Hash digest
SHA256 80e8f323cc46483aed144137501f41be9a605ea55f8c6b756a18d78ea346ddfe
MD5 64aaee659531b1be4e232bdab3e68ced
BLAKE2b-256 f09de4274bcd101aac09760fb46c4d79bd480973a12f8c7d2ef6b4fb1ba568b7

See more details on using hashes here.

File details

Details for the file clima_anom-0.7.3-py3-none-any.whl.

File metadata

  • Download URL: clima_anom-0.7.3-py3-none-any.whl
  • Upload date:
  • Size: 13.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for clima_anom-0.7.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0d8f8a737dcb3b011a642b6c8bc84879683680e4a9f57556584f5a43ce631928
MD5 0098c73df1e872cb01c69e5c309ec85c
BLAKE2b-256 f2d37bcf2a9909fde5288ea89111181cec995e599bbc1fd41028e7de0abf552c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page