Skip to main content

CliMetLab plugin for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.

Project description

climetlab-power-production

PyPI version workflow

A dataset plugin for climetlab for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.

Features

In this README is a description of how to get the CliMetLab Plugin for A6.

Installation

Via pip

pip install climetlab-maelstrom-power-production

or via poetry

git clone git@github.com:4castRenewables/climetlab-plugin-a6.git
cd climetlab-plugin-a6
poetry install --no-dev

Datasets description

There are five datasets:

  • maelstrom-constants-a-b
  • maelstrom-power-production
  • maelstrom-weather-model-level
  • maelstrom-weather-pressure-level
  • maelstrom-weather-surface-level

A detailed description of each dataset (variables, meta data etc.) is available here (see Section 3.6).

maelstrom-constants-a-b

Constants used for calculation of pressure at intermediate model levels.

Usage

import climetlab as cml

production_data = cml.load_dataset("maelstrom-constants-a-b")

References

IFS Documentation – Cy47r1, Operational implementation 30 June 2020, Part III: Dynamics and Numerical Procedures, ECMWF, 2020, p. 6, Eq. 2.11

maelstrom-power-production

Power production data of wind turbines located in various regions of Germany.

The data were provided by NOTUS energy GmbH & Co. KG. For a detailed description see the link above.

Usage

import climetlab as cml

production_data = cml.load_dataset("maelstrom-power-production", wind_turbine_id=1)

The wind_turbine_id is a number 1 to N, where N is the maximum number of currently available wind turbines.

Currently available: 4 wind turbines.

maelstrom-weather-model-level

ECMWF IFS HRES model level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml

weather_ml = cml.load_dataset("maelstrom-weather-model-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

maelstrom-weather-pressure-level

ECMWF IF HRES pressure level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml

weather_pl = cml.load_dataset("maelstrom-weather-pressure-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

maelstrom-weather-surface-level

ECMWF IFS HRES surface level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml

weather_pl = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

Using climetlab to access the data (supports grib, netcdf and zarr)

See the demo notebooks here.

The climetlab python package allows easy access to the data with a few lines of code such as:

!pip install climetlab climetlab-maelstrom-power-production
import climetlab as cml

data = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")
data.to_xarray()

Executing the notebooks

Before executing the notebooks, make sure to install the project and the notebook dependencies correctly

poetry install --extras notebooks

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file climetlab_maelstrom_power_production-0.2.2.tar.gz.

File metadata

File hashes

Hashes for climetlab_maelstrom_power_production-0.2.2.tar.gz
Algorithm Hash digest
SHA256 9d97fdaefdaf372c73c7b1c9deb3b0ad71e13400b593e7fd1b17e67278d9921e
MD5 95c81af9c633b092c8b4ba866ed50fb6
BLAKE2b-256 3f62fccb96c47578b5c4bf12a52b993b8674cb76d7945ebd9c6ad00e551102a2

See more details on using hashes here.

File details

Details for the file climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ba392562b11dc4466a9c9fa654cc8d333d1059e80e4058b32d8756706ac1d796
MD5 5602ade58a78b49497134283f068cdfa
BLAKE2b-256 b779e7fc927bf7c7e58358007401b2a65067a6dc42f157d7949e00db9f5027bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page