CliMetLab plugin for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.
Project description
climetlab-power-production
A dataset plugin for climetlab for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.
Features
In this README is a description of how to get the CliMetLab Plugin for A6.
Installation
Via pip
pip install climetlab-maelstrom-power-production
or via poetry
git clone git@github.com:4castRenewables/climetlab-plugin-a6.git
cd climetlab-plugin-a6
poetry install --no-dev
Datasets description
There are five datasets:
maelstrom-constants-a-b
maelstrom-power-production
maelstrom-weather-model-level
maelstrom-weather-pressure-level
maelstrom-weather-surface-level
A detailed description of each dataset (variables, meta data etc.) is available here (see Section 3.6).
maelstrom-constants-a-b
Constants used for calculation of pressure at intermediate model levels.
Usage
import climetlab as cml
production_data = cml.load_dataset("maelstrom-constants-a-b")
References
IFS Documentation – Cy47r1, Operational implementation 30 June 2020, Part III: Dynamics and Numerical Procedures, ECMWF, 2020, p. 6, Eq. 2.11
maelstrom-power-production
Power production data of wind turbines located in various regions of Germany.
The data were provided by NOTUS energy GmbH & Co. KG. For a detailed description see the link above.
Usage
import climetlab as cml
production_data = cml.load_dataset("maelstrom-power-production", wind_turbine_id=1)
The wind_turbine_id
is a number 1
to N
, where N
is the maximum number of currently available wind turbines.
Currently available: 4 wind turbines.
maelstrom-weather-model-level
ECMWF IFS HRES model level data for whole Europe.
For a detailed description see the link above.
Usage
import climetlab as cml
weather_ml = cml.load_dataset("maelstrom-weather-model-level", date="2019-01-01")
Currently available dates:
2017-01-01
until2020-12-31
maelstrom-weather-pressure-level
ECMWF IF HRES pressure level data for whole Europe.
For a detailed description see the link above.
Usage
import climetlab as cml
weather_pl = cml.load_dataset("maelstrom-weather-pressure-level", date="2019-01-01")
Currently available dates:
2017-01-01
until2020-12-31
maelstrom-weather-surface-level
ECMWF IFS HRES surface level data for whole Europe.
For a detailed description see the link above.
Usage
import climetlab as cml
weather_pl = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")
Currently available dates:
2017-01-01
until2020-12-31
Using climetlab to access the data (supports grib, netcdf and zarr)
See the demo notebooks here.
The climetlab python package allows easy access to the data with a few lines of code such as:
!pip install climetlab climetlab-maelstrom-power-production
import climetlab as cml
data = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")
data.to_xarray()
Executing the notebooks
Before executing the notebooks, make sure to install the project and the notebook dependencies correctly
poetry install --extras notebooks
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file climetlab_maelstrom_power_production-0.2.2.tar.gz
.
File metadata
- Download URL: climetlab_maelstrom_power_production-0.2.2.tar.gz
- Upload date:
- Size: 11.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.9.17 Linux/6.8.0-1014-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d97fdaefdaf372c73c7b1c9deb3b0ad71e13400b593e7fd1b17e67278d9921e |
|
MD5 | 95c81af9c633b092c8b4ba866ed50fb6 |
|
BLAKE2b-256 | 3f62fccb96c47578b5c4bf12a52b993b8674cb76d7945ebd9c6ad00e551102a2 |
File details
Details for the file climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl
.
File metadata
- Download URL: climetlab_maelstrom_power_production-0.2.2-py3-none-any.whl
- Upload date:
- Size: 17.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.9.17 Linux/6.8.0-1014-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba392562b11dc4466a9c9fa654cc8d333d1059e80e4058b32d8756706ac1d796 |
|
MD5 | 5602ade58a78b49497134283f068cdfa |
|
BLAKE2b-256 | b779e7fc927bf7c7e58358007401b2a65067a6dc42f157d7949e00db9f5027bc |