Skip to main content

CliMetLab plugin for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.

Project description

climetlab-power-production

PyPI version workflow

A dataset plugin for climetlab for the dataset climetlab-plugin-a6/maelstrom-production-forecasts.

Features

In this README is a description of how to get the CliMetLab Plugin for A6.

Installation

Via pip

pip install climetlab-maelstrom-power-production

or via poetry

git clone git@github.com:4castRenewables/climetlab-plugin-a6.git
cd climetlab-plugin-a6
poetry install --no-dev

Datasets description

There are five datasets:

  • maelstrom-constants-a-b
  • maelstrom-power-production
  • maelstrom-weather-model-level
  • maelstrom-weather-pressure-level
  • maelstrom-weather-surface-level

A detailed description of each dataset (variables, meta data etc.) is available here (see Section 3.6).

maelstrom-constants-a-b

Constants used for calculation of pressure at intermediate model levels.

Usage

import climetlab as cml
production_data = cml.load_dataset("maelstrom-constants-a-b")

References

IFS Documentation – Cy47r1, Operational implementation 30 June 2020, Part III: Dynamics and Numerical Procedures, ECMWF, 2020, p. 6, Eq. 2.11

maelstrom-power-production

Power production data of wind turbines located in various regions of Germany.

The data were provided by NOTUS energy GmbH & Co. KG. For a detailed description see the link above.

Usage

import climetlab as cml
production_data = cml.load_dataset("maelstrom-power-production", wind_turbine_id=1)

The wind_turbine_id is a number 1 to N, where N is the maximum number of currently available wind turbines.

Currently available: 45 wind turbines.

maelstrom-weather-model-level

ECMWF IFS HRES model level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml
weather_ml = cml.load_dataset("maelstrom-weather-model-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

maelstrom-weather-pressure-level

ECMWF IF HRES pressure level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml
weather_pl = cml.load_dataset("maelstrom-weather-pressure-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

maelstrom-weather-surface-level

ECMWF IFS HRES surface level data for whole Europe.

For a detailed description see the link above.

Usage

import climetlab as cml
weather_pl = cml.load_dataset("maelstrom-weather-surface-level", date="2019-01-01")

Currently available dates:

  • 2017-01-01 until 2020-12-31

Using climetlab to access the data (supports grib, netcdf and zarr)

See the demo notebooks here.

The climetlab python package allows easy access to the data with a few lines of code such as:

!pip install climetlab climetlab-maelstrom-power-production
import climetlab as cml
data = cml.load_dataset("maelstrom-power-production", date="2019-01-01")
data.to_xarray()

Executing the notebooks

Before executing the notebooks, make sure to install the project and the notebook dependencies correctly

poetry install --extras notebooks

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file climetlab-maelstrom-power-production-0.2.1.tar.gz.

File metadata

File hashes

Hashes for climetlab-maelstrom-power-production-0.2.1.tar.gz
Algorithm Hash digest
SHA256 8c7148765e6478ac78c1efcab649a96e046131a49b6bdd61361b2930ed764183
MD5 d4b6fad8abdbe09be3258307a2c5c701
BLAKE2b-256 79bdae957347bb685f36cf01b3ffe4850d6bd6763a61abaacf0306e3491bb2aa

See more details on using hashes here.

File details

Details for the file climetlab_maelstrom_power_production-0.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for climetlab_maelstrom_power_production-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 24b6dfda486018d4d8975c35d9bfb3882d720c774cba48bec14cc5922a107c18
MD5 794dfe0dc7cb01b74d00189daf4c704a
BLAKE2b-256 19233e1d117d3985ba9d9bef28c770b4e33c45c5253c9ca65bdd80dbd9aad0ee

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page