Skip to main content

Package for calculating CLIP-Score using PyTorch

Project description

CLIP Score for PyTorch

PyPI

This repository provides a batch-wise quick processing for calculating CLIP scores. It uses the pretrained CLIP model to measure the cosine similarity between two modalities. The project structure is adapted from pytorch-fid and CLIP.

Installation

Requirements:

  • Install PyTorch:
    pip install torch  # Choose a version that suits your GPU
    
  • Install CLIP:
    pip install git+https://github.com/openai/CLIP.git
    
  • Install clip-score from PyPI:
    pip install clip-score
    

Usage

To compute the CLIP score between images and texts, make sure that the image and text data are contained in two separate folders, and each sample has the same name in both modalities. Run the following command:

python -m clip_score path/to/image path/to/text

To run the evaluation on a GPU, use the --device cuda:N flag, where N is the index of the GPU to use.

Computing CLIP Score within the Same Modality

If you want to calculate the CLIP score within the same modality (e.g., image-image or text-text), follow the same folder structure as mentioned above. Additionally, specify the preferred modalities using the --real_flag and --fake_flag options. By default, --real_flag=img and --fake_flag=txt. Examples:

python -m clip_score path/to/imageA path/to/imageB --real_flag img --fake_flag img
python -m clip_score path/to/textA path/to/textB --real_flag txt --fake_flag txt

Citing

If you use this repository in your research, consider citing it using the following Bibtex entry:

@misc{taited2023CLIPScore,
  author={SUN Zhengwentai},
  title={{clip-score: CLIP Score for PyTorch}},
  month={March},
  year={2023},
  note={Version 0.1.0},
  howpublished={\url{https://github.com/taited/clip-score}},
}

License

This implementation is licensed under the Apache License 2.0.

The project structure is adapted from mseitzer's pytorch-fid project. The CLIP model is adapted from OpenAI's CLIP.

The CLIP Score was introduced in OpenAI's Learning Transferable Visual Models From Natural Language Supervision.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

clip-score-0.1.1.tar.gz (10.5 kB view details)

Uploaded Source

File details

Details for the file clip-score-0.1.1.tar.gz.

File metadata

  • Download URL: clip-score-0.1.1.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for clip-score-0.1.1.tar.gz
Algorithm Hash digest
SHA256 eb24fdbd30dc45d1fa989b4509bd906ec536519c593bf64f0a92ba1cc5757811
MD5 218d6a9760aab3308da4f3028d771d61
BLAKE2b-256 53147e970ca2ff092a4fdae1296c82feb511c3e7e6c168986e8ce28131f9161a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page