A DataLoader library for Continual Learning in PyTorch.
Project description
Continual Loader (CLLoader)
A library for PyTorch's loading of datasets in the field of Continual Learning
Aka Continual Learning, Lifelong-Learning, Incremental Learning, etc.
Example:
from torch.utils.data import DataLoader
from clloader import CLLoader
from clloader.datasets import MNIST
clloader = CLLoader(
MNIST("my/data/path", download=True),
increment=1,
initial_increment=5
)
print(f"Number of classes: {clloader.nb_classes}.")
print(f"Number of tasks: {clloader.nb_tasks}.")
for task_id, (train_dataset, test_dataset) in enumerate(clloader):
train_loader = DataLoader(train_dataset)
test_loader = DataLoader(test_dataset)
# Do your cool stuff here
Supported Scenarios
Name | Acronym | Supported |
---|---|---|
New Instances | NI | :x: |
New Classes | NC | :white_check_mark: |
New Instances & Classes | NIC | :x: |
Supported Datasets:
Note that the task sizes are fully customizable.
Name | Nb classes | Image Size | Automatic Download |
---|---|---|---|
MNIST | 10 | 28x28x1 | :white_check_mark: |
Fashion MNIST | 10 | 28x28x1 | :white_check_mark: |
KMNIST | 10 | 28x28x1 | :white_check_mark: |
EMNIST | 10 | 28x28x1 | :white_check_mark: |
QMNIST | 10 | 28x28x1 | :white_check_mark: |
MNIST Fellowship | 30 | 28x28x1 | :white_check_mark: |
CIFAR10 | 10 | 32x32x3 | :white_check_mark: |
CIFAR100 | 100 | 32x32x3 | :white_check_mark: |
CIFAR Fellowship | 110 | 32x32x3 | :white_check_mark: |
ImageNet100 | 100 | 224x224x3 | :x: |
ImageNet1000 | 1000 | 224x224x3 | :x: |
Permuted MNIST | 10 + X * 10 | 224x224x3 | :white_check_mark: |
Furthermore some "Meta"-datasets are available:
- InMemoryDataset: for in-memory numpy array
- PyTorchDataset: for any dataset defined in torchvision
- ImageFolderDataset: for datasets having a tree-like structure, with one folder per class
- Fellowship: to combine several datasets
Sample Images
MNIST:
Task 0 | Task 1 | Task 2 | Task 3 | Task 4 |
FashionMNIST:
Task 0 | Task 1 | Task 2 | Task 3 | Task 4 |
CIFAR10:
Task 0 | Task 1 | Task 2 | Task 3 | Task 4 |
MNIST Fellowship (MNIST + FashionMNIST + KMNIST):
Task 0 | Task 1 | Task 2 |
PermutedMNIST:
Task 0 | Task 1 | Task 2 | Task 3 | Task 4 |
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file clloader-arthurdouillard-0.0.1.tar.gz
.
File metadata
- Download URL: clloader-arthurdouillard-0.0.1.tar.gz
- Upload date:
- Size: 409.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89551bb617ee77d92ef3c7e9184315419a6f8f09bd6602017708b5575424edb6 |
|
MD5 | 5e0ac75abb2df7a35ace0b874531dbe7 |
|
BLAKE2b-256 | 9931bd2599e2ddbceea37cea43f011c407d4cb3a5cd620c3da626c5efd9f345e |
File details
Details for the file clloader_arthurdouillard-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: clloader_arthurdouillard-0.0.1-py3-none-any.whl
- Upload date:
- Size: 11.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.30.0 CPython/3.7.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6fd2d2bf93814a8f4ce0c8b6f9b10dfcca2a8ee8b25939b9891c58ee86236046 |
|
MD5 | 56a3b39caa030398c62824942d452872 |
|
BLAKE2b-256 | 70575b7182ad26a819afde674c79b230c339dea387250c3dec6d4a1a88e9f34a |