Skip to main content

A python API Client for Cloogy

Project description

Cloogy

Python client for Cloogy

See Demo.ipynb for a working Jupyter Notebook

0. Install cloogy

In your terminal: pip3 install cloogy

or in a python shell or notebook:

import pip
pip.main(['install', 'cloogy'])
import yaml

from cloogy import CloogyClient

1. Get your credentials

Get your login and password.

In this example we'll load it from a YAML file.

with open('credentials.yaml', 'r') as f:
    credentials = yaml.load(f)
login = credentials['login']
password = credentials['password']

2. Create a CloogyClient

If you supply a login and password, authentication will be handled for you.

client = CloogyClient(login=login, password=password)

3. List your Units

units = client.get_units()
units

4. Get a specific Unit by ID

# Lets grab the first ID from the list above
unit_id = units[0]['Id']
print(unit_id)
unit = client.get_unit(unit_id=unit_id)
unit

5. Find out some stuff about your unit

The Unit class is an extension to the regular python dict. This means it behaves like a normal dict, but adds some extra features.

# Get date and time of the last communication
unit.get_last_communication_date()

6. List all available Tags for your login

client.get_tags()

7. List available Tags for a Unit

tags = unit.get_tags()
tags
[tag['Id'] for tag in tags]

8. Get a specific Tag directly

tag_id = tags[0]['Id']
print(tag_id)
tag = client.get_tag(tag_id=tag_id)
tag
tag.get_last_communication_date()

9. Get consumptions

# pick a start and end time, as POSIX timestamp

import pandas as pd
start = int(pd.Timestamp('20180414').timestamp() * 1000)
end = int(pd.Timestamp('20180416').timestamp() * 1000)
print(start, end)
client.get_consumptions(
    granularity='hourly', # can be Instant, Hourly, Daily, Monthly, Yearly
    start=start,
    end=end,
    tags=[tag_id], # List of tag Id's
    instants_type=None  # How instant measurements should be aggregated. Can be Avg, Max, Min, Stdev. Default is Avg.
)

10. Get consumptions as a DataFrame

For some easy analysis, methods to get data as a Pandas DataFrame are included

Let's say we want to analyse the active energy consumption, which has TagTypeId 20001

tags = client.get_tags(where='TagTypeId=20001')
tag_ids = [tag['Id'] for tag in tags]

start = pd.Timestamp('20180101')
end = pd.Timestamp('20180417')
client.get_consumptions_dataframe(granularity='monthly', start=start, end=end, tags=tag_ids)

A flat table like this is nice, but it can contain multiple TagIds, and it has way to many columns we don't need.

We can also get a table for only the readings:

df = client.get_readings_dataframe(granularity='monthly', start=start, end=end, tags=tag_ids, metric='Read')
df
# make a plot!

%matplotlib inline
df.plot.bar()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloogy-0.1.0.tar.gz (6.4 kB view details)

Uploaded Source

Built Distribution

cloogy-0.1.0-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file cloogy-0.1.0.tar.gz.

File metadata

  • Download URL: cloogy-0.1.0.tar.gz
  • Upload date:
  • Size: 6.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3

File hashes

Hashes for cloogy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 9f2bbe9cde228d9a0919512253f06e51662eeb82e6ccbd08aefe8049da648f67
MD5 e9fe6a886f04af74290b130c4dbfe7e9
BLAKE2b-256 fba902f7f6495eb671f4a1f37b3f4294b560e7eb64fce6d508b8f30f5d1716c1

See more details on using hashes here.

File details

Details for the file cloogy-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: cloogy-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 7.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.42.0 CPython/3.7.3

File hashes

Hashes for cloogy-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 382ce0426492a8e43b780041d5c1a711e14e987acaae3b6efd7ae364a5c3703d
MD5 a3f30f1a8a99ab32150e8169cbcbe431
BLAKE2b-256 57a691c32d986608105abb9a3dd5b8c96545dc8be22781936b29b0b9cc471cfb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page