Skip to main content

Mongodb documentand python dict similarity

Project description

This package now supporting closeness amoung python dicts

This is project is using to find relationship between mongodb documents

This will be the initial version of the project

How to use:

Install package with pip

pip install closeness

See the example,

from closeness.closeness_aggregation import ClosenessAggregation
from pymongo import MongoClient
client = MongoClient()
db = client.test_database
user_collection = db.user_collection
user1 = {
    'name': 'User 1',
    'age': 25,
    'gender': 'male',
    'tags': [
        "tag1",
        "tag2",
        "tag3",
    ],
    'friends': [
        {"user_id": "friend1", 'name': "name1"},
        {"user_id": "friend2", 'name': "name2"},
        {"user_id": "friend3", 'name': "name3"},
    ]
}
user2 = {
    'name': 'User 2',
    'age': 25,
    'gender': 'male',
    'tags': [
        "tag1",
        "tag2",
        "tag3",
    ],
    'friends': [
        {"user_id": "friend1", 'name': "name1"},
        {"user_id": "friend2", 'name': "name2"},
        {"user_id": "friend3", 'name': "name3"},
    ]
}
user3 = {
    'name': 'User 3',
    'age': 30,
    'gender': 'female',
    'tags': [
        "tag1",
    ],
    'friends': [
        {"user_id": "friend3", 'name': "name3"},
    ]
}
user_collection.insert([user1, user2, user3])
query_stage = {'$match': {'name': {'$ne': user1['name']}}}
ARRAY_CMP_FIELDS = [
    {
        'field': 'tags',
        'weight': 3
    }
]
ARRAY_DICT_CMP_FIELDS = [
    {
        'field': 'friends',
        'unique': 'user_id',
        'weight': .5
    }
]
STRING_CMP_FIELDS = [
    {
        'field': 'gender',
        'weight': .5
    }
]
NUM_CMP_FIELDS = [
    {
        'field': 'age',
        'from': -1,
        'to': 1,
        'weight': .3
    }
]
OUT_PUT_FIELDS = [
    'name', 'age'
]
test = ClosenessAggregation(
    user1,
    query_stage,
    OUT_PUT_FIELDS,
    limit=10,
    ARRAY_CMP_FIELDS=ARRAY_CMP_FIELDS,
    STRING_CMP_FIELDS=STRING_CMP_FIELDS,
    NUM_CMP_FIELDS=NUM_CMP_FIELDS,
    ARRAY_DICT_CMP_FIELDS=ARRAY_DICT_CMP_FIELDS,
)

aggregation_query = test.get_aggregation_pipeline(
    mode=ClosenessAggregation.FUZZY
)
result = user_collection.aggregate(aggregation_query)

# {u'ok': 1.0,
#  u'result': [{u'age': 25,
#               u'_id': ObjectId('55c894dcb67e20612cd6ddf0'),
#               u'weights': [{u'gender': 11.627906976744187,
#                             u'age': 6.9767441860465125,
#                             u'friends': 11.626615417599819,
#                             u'tags': 69.75969250559892}],
#               u'name': u'User 2',
#               u'rank': 99.99095908598945},
#              {u'age': 30,
#               u'_id': ObjectId('55c894dcb67e20612cd6ddf1'),
#               u'weights': [{u'gender': 0,
#                             u'age': 0,
#                             u'friends': 6.456076223518085,
#                             u'tags': 38.73645734110851}],
#               u'name': u'User 3',
#               u'rank': 45.1925335646266}]}


aggregation_query = closeness_obj.get_aggregation_pipeline(
    mode=ClosenessAggregation.SIMPLE
)

result = user_collection.aggregate(aggregation_query)

# {u'ok': 1.0,
#  u'result': [{u'age': 25,
#               u'_id': ObjectId('55c894dcb67e20612cd6ddf3'),
#               u'weights': [{u'gender': 11.627906976744187,
#                             u'age': 6.9767441860465125,
#                             u'friends': 11.627906976744187,
#                             u'tags': 69.76744186046513}],
#               u'name': u'User 2',
#               u'rank': 100.00000000000001},
#              {u'age': 30,
#               u'_id': ObjectId('55c894dcb67e20612cd6ddf4'),
#               u'weights': [{u'gender': 0,
#                             u'age': 0,
#                             u'friends': 3.8759689922480622,
#                             u'tags': 23.255813953488374}],
#               u'name': u'User 3',
#               u'rank': 27.131782945736436}]}



# By using python dicts


users = [user2, user3]

closeness_dict_obj = ClosenessDict(
    user1,
    users,
    ARRAY_CMP_FIELDS=ARRAY_CMP_FIELDS,
    STRING_CMP_FIELDS=STRING_CMP_FIELDS,
    NUM_CMP_FIELDS=NUM_CMP_FIELDS,
    ARRAY_DICT_CMP_FIELDS=ARRAY_DICT_CMP_FIELDS,
)

result = closeness_dict_obj.execute(
    mode=ClosenessDict.SIMPLE
)

self.assertEqual(
    result[0]['closeness']['rank'],
    100.00000000000001)
self.assertEqual(
    result[1]['closeness']['rank'],
    27.131782945736436)

# [{'name': 'User 2',
#   'tags': ['tag1',
#            'tag2',
#            'tag3'],
#   'gender': 'male',
#   'age': 25,
#   'closeness': {'weightages': {'gender': 11.627906976744187,
#                                'age': 6.9767441860465125,
#                                'friends': 11.627906976744187,
#                                'tags': 69.76744186046513},
#                 'rank': 100.00000000000001},
#   'friends': ['friend1',
#               'friend2',
#               'friend3']},
#  {'name': 'User 3',
#   'tags': ['tag1'],
#   'gender': 'female',
#   'age': 30,
#   'closeness': {'weightages': {'gender': 0.0,
#                                'age': 0.0,
#                                'friends': 3.8759689922480622,
#                                'tags': 23.255813953488374},
#                 'rank': 27.131782945736436},
#     'friends': ['friend3']}]


result = closeness_dict_obj.execute(
    mode=ClosenessDict.FUZZY
)

self.assertEqual(
    result[0]['closeness']['rank'],
    100.00000000000001)
self.assertEqual(
    result[1]['closeness']['rank'],
    45.21963824289406)

# [{'name': 'User 2',
#   'tags': ['tag1',
#            'tag2',
#            'tag3'],
#   'gender': 'male',
#   'age': 25,
#   'closeness': {'weightages': {'gender': 11.627906976744187,
#                                'age': 6.9767441860465125,
#                                'friends': 11.627906976744187,
#                                'tags': 69.76744186046513},
#                 'rank': 100.00000000000001},
#   'friends': ['friend1',
#               'friend2',
#               'friend3']},
#  {'name': 'User 3',
#   'tags': ['tag1'],
#   'gender': 'female',
#   'age': 30,
#   'closeness': {'weightages': {'gender': 0.0,
#                                'age': 0.0,
#                                'friends': 6.459948320413436,
#                                'tags': 38.75968992248062},
#                 'rank': 45.21963824289406},
#     'friends': ['friend3']}]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
closeness-2.0.2.tar.gz (6.5 kB) Copy SHA256 hash SHA256 Source None May 18, 2016

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page