Skip to main content

Monitor, debug and profile the jobs running on Cloud TPU.

Project description

Cloud TPU Diagnostics

This is a comprehensive library to monitor, debug and profile the jobs running on Cloud TPU. To learn about Cloud TPU, refer to the full documentation.

Features

1. Debugging

1.1 Collect Stack Traces

This module will dump the python traces when a fault such as Segmentation fault, Floating-point exception, Illegal operation exception occurs in the program. Additionally, it will also periodically collect stack traces to help debug when a program running on Cloud TPU is stuck or hung somewhere.

Installation

To install the package, run the following command on TPU VM:

pip install cloud-tpu-diagnostics

Usage

To use this package, first import the module:

from cloud_tpu_diagnostics import diagnostic
from cloud_tpu_diagnostics.configuration import debug_configuration
from cloud_tpu_diagnostics.configuration import diagnostic_configuration
from cloud_tpu_diagnostics.configuration import stack_trace_configuration

Then, create configuration object for stack traces. The module will only collect stack traces when collect_stack_trace parameter is set to True. There are following scenarios supported currently:

Scenario 1: Do not collect stack traces on faults
stack_trace_config = stack_trace_configuration.StackTraceConfig(
                      collect_stack_trace=False)

This configuration will prevent you from collecting stack traces in the event of a fault or process hang.

Scenario 2: Collect stack traces on faults and display on console
stack_trace_config = stack_trace_configuration.StackTraceConfig(
                      collect_stack_trace=True,
                      stack_trace_to_cloud=False)

If there is a fault or process hang, this configuration will show the stack traces on the console (stderr).

Scenario 3: Collect stack traces on faults and upload on cloud
stack_trace_config = stack_trace_configuration.StackTraceConfig(
                      collect_stack_trace=True,
                      stack_trace_to_cloud=True)

This configuration will temporary collect stack traces inside /tmp/debugging directory on TPU host if there is a fault or process hang. Additionally, the traces collected in TPU host memory will be uploaded to Google Cloud Logging, which will make it easier to troubleshoot and fix the problems. You can view the traces in Logs Explorer using the following query:

logName="projects/<project_name>/logs/tpu.googleapis.com%2Fruntime_monitor"
jsonPayload.verb="stacktraceanalyzer"

By default, stack traces will be collected every 10 minutes. In order to change the duration between two stack trace collection events, add the following configuration:

stack_trace_config = stack_trace_configuration.StackTraceConfig(
                      collect_stack_trace=True,
                      stack_trace_to_cloud=True,
                      stack_trace_interval_seconds=300)

This configuration will collect the stack traces on cloud after every 5 minutes.

Then, create configuration object for debug.

debug_config = debug_configuration.DebugConfig(
                stack_trace_config=stack_trace_config)

Then, create configuration object for diagnostic.

diagnostic_config = diagnostic_configuration.DiagnosticConfig(
                      debug_config=debug_config)

Finally, call the diagnose() method using with and wrap the statements inside the context manager for which you want to collect the stack traces.

with diagnostic.diagnose(diagnostic_config):
    run_job(...)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloud_tpu_diagnostics-0.1.5.tar.gz (8.4 kB view details)

Uploaded Source

Built Distribution

cloud_tpu_diagnostics-0.1.5-py3-none-any.whl (11.9 kB view details)

Uploaded Python 3

File details

Details for the file cloud_tpu_diagnostics-0.1.5.tar.gz.

File metadata

  • Download URL: cloud_tpu_diagnostics-0.1.5.tar.gz
  • Upload date:
  • Size: 8.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for cloud_tpu_diagnostics-0.1.5.tar.gz
Algorithm Hash digest
SHA256 77d0842c803bc30361d9314399927f1076971b684512ac47d9ca0f1c9848217d
MD5 368bc20ba9b8376ee6c9d0500e364e7c
BLAKE2b-256 7f6dce437b136788aaeaebb1e7c142d9d2f19df79c458b8ef77fad145b213e84

See more details on using hashes here.

File details

Details for the file cloud_tpu_diagnostics-0.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for cloud_tpu_diagnostics-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 a75d32fd1bb6c3a4ab694a0a416fb08f431362302a3b296f881536305d4b85cb
MD5 9cc0bdcda172da9f53b57551f67847d3
BLAKE2b-256 94061bc06b465ce479244cc84321107b8d0850ead4884c1dc8cfaeb61bf9cb75

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page