Skip to main content

Read and write neuroglancer Precomputed formats to cloud storage

Project description

[![Build Status](https://travis-ci.org/seung-lab/cloud-volume.svg?branch=master)](https://travis-ci.org/seung-lab/cloud-volume)

# cloud-volume

Python client for reading and writing to Neuroglancer Precomputed volumes on cloud services. (https://github.com/google/neuroglancer/tree/master/src/neuroglancer/datasource/precomputed)

When working with a particular dataset, say an EM scan of a mouse, fish, or fly brain, you’ll typically store that as a grayscale data layer accessible to neuroglanger. You may store additional labellings and processing results as other layers.

## Usage

Supports reading and writing to neuroglancer data layers on Amazon S3, Google Storage, and the local file system.

Supported URLs are of the forms:

$PROTOCOL://$BUCKET/$DATASET/$LAYER

### Supported Protocols * gs: Google Storage * s3: Amazon S3 * boss: The BOSS (https://docs.theboss.io/docs) * file: Local File System (absolute path)

### Examples

` vol = CloudVolume('gs://mybucket/retina/image') # Basic Example image = vol[:,:,:] # Download the entire image stack into a numpy array vol[64:128, 64:128, 64:128] = image # Write a 64^3 image to the volume vol.save_mesh(12345) # save 12345 as ./12345.obj vol.save_mesh([12345, 12346, 12347]) # merge three segments into one obj `

## Setup

You’ll need to set up your cloud credentials as well as the main install.

### Credentials

` mkdir -p ~/.neuroglancer/secrets/ echo $GOOGLE_STORAGE_PROJECT > ~/.neuroglancer/project_name # needed for Google mv aws-secret.json ~/.neuroglancer/secrets/ # needed for Google mv google-secret.json ~/.neuroglancer/secrets/ # needed for Amazon `

### pip

` pip install cloud-volume `

### Manual ` git clone git@github.com:seung-lab/cloud-volume.git cd cloud-volume mkvirtualenv cloud-volume workon cloud-volume pip install -e . `

## Other Languages

Julia - https://github.com/seung-lab/CloudVolume.jl

Project details


Release history Release notifications | RSS feed

This version

0.1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloud-volume-0.1.0.tar.gz (38.2 kB view details)

Uploaded Source

Built Distribution

cloud_volume-0.1.0-py2.py3-none-any.whl (27.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file cloud-volume-0.1.0.tar.gz.

File metadata

File hashes

Hashes for cloud-volume-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c54d744c819402ab3dfd905074d695c558fef7f5005a029cea29a8e63ab1b38c
MD5 b0cc65812776f80b4e63f8c58424f82f
BLAKE2b-256 d554fa0b0cc8426b801a0d9b4f0e0cbf09024e4da6565e39121d15678dd92fb8

See more details on using hashes here.

Provenance

File details

Details for the file cloud_volume-0.1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for cloud_volume-0.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 18e0a00308e3a2848ae0959f91472a664e1eb1cd92898f3bf03cb2bf92a80433
MD5 8933355df88c315cd50bf43aacdcecb8
BLAKE2b-256 4e403ed895e42279296b4e48388fe4de0a068085be0c73b1bfc3ecf37b74c6a5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page