Skip to main content

Tools to easily create a word cloud

Project description

Cloudia

Tools to easily create a word cloud.

from string

from str or List[str]

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."

# from str
Cloudia(text1).plot()

# from list
Cloudia([text1, text2]).plot()

example from : 20 Newsgroups

sample_img

We can also make it from Tuple.

from cloudia import Cloudia

text1 = "text data..."
text2 = "text data..."
Cloudia([ ("cloudia 1", text1), ("cloudia 2", text2) ]).plot()

Tuple is ("IMAGE TITLE", "TEXT").

from pandas

We can use pandas.

df = pd.DataFrame({'wc1': ['sample1','sample2'], 'wc2': ['hoge hoge piyo piyo fuga', 'hoge']})

# plot from df
Cloudia(df).plot()

# add df method
df.wc.plot(dark_theme=True)

from pandas.DataFrame or pandas.Series.

pandas_img dark_img

We can use Tuple too.

Cloudia( ("IMAGE TITLE", pd.Series(['hoge'])) ).plot()

from japanese

We can process Japanese too.

text = "これはCloudiaのテストです。WordCloudをつくるには本来、形態素解析の導入が必要になります。Cloudiaはmecabのような形態素解析器の導入は必要はなくnagisaを利用した動的な生成を行う事ができます。nagisaとjapanize-matplotlibは、形態素解析を必要としてきたWordCloud生成に対して、Cloudiaに対して大きく貢献しました。ここに感謝の意を述べたいと思います。"

Cloudia(text).plot()

from japanese without morphological analysis module.

japanese_img

No need to introduce morphological analysis.

Install

pip install cloudia

Args

Cloudia args.

Cloudia(
  data,    # text data
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False    # flag for ' '.join(word) with parse 
)

plot method args.

Cloudia().plot(
    dark_theme=False,    # color theme
    title_size=12,     # title text size
    row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
    figsize_rate=2    # figure size rate
)

save method args.

Cloudia().save(
    file_path,    # save figure image path
    dark_theme=False,
    title_size=12, 
    row_num=3,
    figsize_rate=2
)

pandas.DataFrame, pandas.Series wc.plot method args.

DataFrame.wc.plot(
  single_words=[],    # It's not split word list, example: ["neural network"]
  stop_words=STOPWORDS,    # not count words, default is wordcloud.STOPWORDS
  extract_postags=['名詞', '英単語', 'ローマ字文'],    # part of speech for japanese
  parse_func=None,    # split text function, example: lambda x: x.split(',')
  multiprocess=True,    # Flag for using multiprocessing
  individual=False,    # flag for ' '.join(word) with parse 
  dark_theme=False,    # color theme
  title_size=12,     # title text size
  row_num=3,    # for example, 12 wordcloud, row_num=3 -> 4*3image
  figsize_rate=2    # figure size rate
)

If we use wc.save, setting file_path args.

Thanks

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloudia-0.2.2.tar.gz (7.0 kB view hashes)

Uploaded source

Built Distribution

cloudia-0.2.2-py3-none-any.whl (7.8 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page