Skip to main content

Helper to create python cloudio applications

Project description

cloudio-connector-python

This library is a helper to create python cloudio applications.

The cloudio project: http://cloudio.hevs.ch/

The cloud.iO three layers

Cloud.iO is composed of 3 layers:

alt text

  • The endpoints: distributed field devices that mainly measures and actuate things.
  • Cloudio services: the cloud.iO server that communicate with the endpoints, stores the data and provide a http rest api to the applications.
  • The applications: data analysis, controls the endpoint setpoints, ...

This library is used to create applications.

The cloud.iO data model

Here is a quick reminder of the cloud.iO data model: alt text

Note: You can have objects in objects, that's why an object list is needed to create an AttributeId.

You can get the data model of an endpoint:

cc = CloudioConnector("https://example.com", "user", "password")

sp = cc.get_endpoint_structure('ba3d3ec2-23b6-45a8-827a-3b3133a69076')   

Read/Write attributes

Example

cc = CloudioConnector("https://example.com", "user", "password")

sp = AttributeId(uuid='ba3d3ec2-23b6-45a8-827a-3b3133a69076', node='myNode', 
                    objects=['myObject'], attribute='mySetPoint')
mea = AttributeId(uuid=cc.get_uuid('demo'), node='myNode', 
                    objects=['myObject'], attribute='myMeasure')

# get the last value of an attribute
last_val = cc.get_last_value(mea)
print(str(mea) + ' ' + str(last_val))

# get the mean value of the last 15 minutes
mean = cc.get_mean_value(mea, 15*60)

# write the value of an attribute
cc.write_value(sp, 1.0)      

Get attributes time series

Example

cc = CloudioConnector("https://example.com", "user", "password")

sp = AttributeId(uuid='ba3d3ec2-23b6-45a8-827a-3b3133a69076', node='myNode', 
                    objects=['myObject'], attribute='mySetPoint')
mea = AttributeId(uuid=cc.get_uuid('demo'), node='myNode', 
                    objects=['myObject'], attribute='myMeasure')

tm_mea = TimeSeries(mea, start=datetime.now() - datetime.timedelta(hours=24), 
                    stop=datetime.now(), resample='15m')
tm_sp = TimeSeries(sp, start=datetime.now() - datetime.timedelta(hours=24), 
                    stop=datetime.now(), resample='15m')

# get attribute time series
data = cc.get_time_series(tm_mea)
# data is the same as tm_mea.data

# convert cloudio time series to panda data frame
cc.data_frame(data, serie_name="My Measure")

# get multiple time series with multithreading
cc.get_multiple_time_series([tm_mea, tm_sp])
print(tm_mea.data)
print(tm_sp.data)

Get notified for attribute new value

Example

class Example(AttributeListener):
    def __init__(self):
        cc = CloudioConnector("https://example.com", "user", "password")
        cc.add_attribute_listener(self)

        attr = AttributeId(uuid=cc.get_uuid('demo'), node='myNode', 
                            objects=['myObject'], attribute='myMeasure'),
        
        # subscribe to attribute on change event
        cc.subscribe_to_attribute(attr)
        
    # this method is called when a subscribed attribute has changed
    def attribute_has_changed(self, attribute: AttributeId, value):
        print(str(attribute) + ' ' + str(value))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloudio-connector-python-1.2.3.tar.gz (7.8 kB view hashes)

Uploaded Source

Built Distribution

cloudio_connector_python-1.2.3-py3-none-any.whl (7.6 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page