A library to report Google CloudML Engine HyperTune metrics.
Project description
Helper Functions for CloudML Engine Hypertune Services.
Prerequisites
Google CloudML Engine Overview.
Google CloudML Engine Hyperparameter Tuning Overview.
Installation
Install via pip:
pip install cloudml-hypertune
Usage
import hypertune
hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='my_metric_tag',
metric_value=0.987,
global_step=1000)
By default, the metric entries will be stored to /tmp/hypertune/outout.metric in json format:
{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}
Licensing
Apache 2.0
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cloudml-hypertune-0.1.0.dev6.tar.gz
.
File metadata
- Download URL: cloudml-hypertune-0.1.0.dev6.tar.gz
- Upload date:
- Size: 3.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/2.7.15
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b96a5a203ecf7b3302e94f63977d7293fe21c696bea27e35667de82599696a89 |
|
MD5 | 9c035ad0126ec84199943df2ae0afc0c |
|
BLAKE2b-256 | 8454142a00a29d1c51dcf8c93b305f35554c947be2faa0d55de1eabcc0a9023c |