Skip to main content

A library to report Google CloudML Engine HyperTune metrics.

Project description

cloudml-hypertune provides functionalities to report metrics for Google CloudML Engine Hyperparameter Tuning Service.

Installation

Install via pip:

pip install cloudml-hypertune

Prerequisites

Usage

import hypertune

hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
    hyperparameter_metric_tag='my_metric_tag',
    metric_value=0.987,
    global_step=1000)

By default, the metric entries will be stored to /var/hypertune/outout.metric in json format:

{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}

Licensing

  • Apache 2.0

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for cloudml-hypertune, version 0.1.0.dev2
Filename, size File type Python version Upload date Hashes
Filename, size cloudml_hypertune-0.1.0.dev2-py2.py3-none-any.whl (5.3 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size cloudml-hypertune-0.1.0.dev2.tar.gz (3.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page