Skip to main content

Lightweight code to run inference with CloudSEN12 models

Project description

CloudSEN12 DOI:10.1038/s41597-022-01878-2 CloudSEN12+ DOI:10.1016/j.dib.2024.110852 PyPI PyPI - License HF HF

Logo CloudSEN12

This package contains minimum code to run the CloudSEN12 models☁️ proposed in Aybar et al. 2022 and Aybar et al. 2024.

pip install cloudsen12_models

Run:

# Read S2 image from Google Earth Engine
bands = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8', 'B8A', 'B9', 'B10', 'B11', 'B12']
img_local = ee_image.export_image_getpixels(asset_id='COPERNICUS/S2_HARMONIZED/20240417T064631_20240417T070110_T40RCN',
                                            proj={"crs": 'EPSG:32640', "transform":  [10, 0, 300000, 0, -10, 2800020]},
                                            bands_gee=bands,
                                            geometry=box(55.325, 25.225, 55.415, 25.28))

# Load model
modelv2 = cloudsen12.load_model_by_name(name="UNetMobV2_V2", weights_folder="cloudsen12_models")

# Compute cloud mask
cloudmaskv2 = modelv2.predict(img_local/10_000)

# Plot
fig, ax = plt.subplots(1,2,figsize=(14,5),sharey=True, tight_layout=True)
rgb = (img_local.isel({"band": [bands.index(b) for b in ["B4","B3","B2"]]}) / 4_500.).clip(0,1)
plot.show(rgb,ax=ax[0])
cloudsen12.plot_cloudSEN12mask(cloudmaskv2,ax=ax[1])

Full example at: run_in_gee_image.ipynb.

models HF

With this package, the following models can be loaded: (with the function cloudsen12.load_model_by_name())

  • cloudsen12 Model trained on the 13 bands of Sentinel-2 L1C in the CloudSEN12 dataset.
  • cloudsen12l2a Model trained on the 12 bands of Sentinel-2 L2A in the CloudSEN12 dataset.
  • dtacs4bands Model trained on the NIR, RED, GREEN and BLUE bands of Sentinel-2 L1C in the CloudSEN12 dataset. Bands: ["B08", "B04", "B03", "B02"]
  • landsat30 Model trained on the common bands of Sentinel-2 L1C and Landsat 8 and 9 in the CloudSEN12 dataset. Bands: ['B01', 'B02', 'B03', 'B04', 'B08', 'B10', 'B11', 'B12'].
  • UNetMobV2_V1 Model trained on the 13 bands of Sentinel-2 L1C in the CloudSEN12 dataset. The cloud masks of this model are included in CloudSEN12+ dataset.
  • UNetMobV2_V2 Model trained on the 13 bands of Sentinel-2 L1C in the CloudSEN12+.

For examples about dataset use and training see cloudsen12.github.io.

Citation

If you find this code useful please cite:

@article{aybar_cloudsen12_2024,
	title = {{CloudSEN12}+: {The} largest dataset of expert-labeled pixels for cloud and cloud shadow detection in {Sentinel}-2},
	issn = {2352-3409},
	url = {https://www.sciencedirect.com/science/article/pii/S2352340924008163},
	doi = {10.1016/j.dib.2024.110852},
	journal = {Data in Brief},
	author = {Aybar, Cesar and Bautista, Lesly and Montero, David and Contreras, Julio and Ayala, Daryl and Prudencio, Fernando and Loja, Jhomira and Ysuhuaylas, Luis and Herrera, Fernando and Gonzales, Karen and Valladares, Jeanett and Flores, Lucy A. and Mamani, Evelin and Quiñonez, Maria and Fajardo, Rai and Espinoza, Wendy and Limas, Antonio and Yali, Roy and Alcántara, Alejandro and Leyva, Martin and Loayza-Muro, Raúl and Willems, Bram and Mateo-García, Gonzalo and Gómez-Chova, Luis},
	month = aug,
	year = {2024},
	pages = {110852},
}

@article{aybar_cloudsen12_2022,
	title = {{CloudSEN12}, a global dataset for semantic understanding of cloud and cloud shadow in {Sentinel}-2},
	volume = {9},
	issn = {2052-4463},
	url = {https://www.nature.com/articles/s41597-022-01878-2},
	doi = {10.1038/s41597-022-01878-2},
	number = {1},
	urldate = {2023-01-02},
	journal = {Scientific Data},
	author = {Aybar, Cesar and Ysuhuaylas, Luis and Loja, Jhomira and Gonzales, Karen and Herrera, Fernando and Bautista, Lesly and Yali, Roy and Flores, Angie and Diaz, Lissette and Cuenca, Nicole and Espinoza, Wendy and Prudencio, Fernando and Llactayo, Valeria and Montero, David and Sudmanns, Martin and Tiede, Dirk and Mateo-García, Gonzalo and Gómez-Chova, Luis},
	month = dec,
	year = {2022},
	pages = {782},
}

Acknowledgments

This research has been funded by the DEEPCLOUD project (PID2019-109026RB-I00) funded by the Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033) and the European Union (NextGenerationEU).

DEEPCLOUD project (PID2019-109026RB-I00, University of Valencia) funded by MCIN/AEI/10.13039/501100011033.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cloudsen12_models-0.4.4.tar.gz (10.1 kB view details)

Uploaded Source

Built Distribution

cloudsen12_models-0.4.4-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file cloudsen12_models-0.4.4.tar.gz.

File metadata

  • Download URL: cloudsen12_models-0.4.4.tar.gz
  • Upload date:
  • Size: 10.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for cloudsen12_models-0.4.4.tar.gz
Algorithm Hash digest
SHA256 12445b51de6eb41fbe3742eae4575091a2311db4f36071aee7f2a2affb9fc44d
MD5 0d388d589409f83772c37415d0c1f1e8
BLAKE2b-256 1a9e8985056faf39e1c2faac239e7ca455470b606e29de6316d12acf8c586e4b

See more details on using hashes here.

File details

Details for the file cloudsen12_models-0.4.4-py3-none-any.whl.

File metadata

File hashes

Hashes for cloudsen12_models-0.4.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a01edf7f354662d790a8ca98d96ec32a53b0c4dfc8719c346a6cde50b9ca5601
MD5 5e684a8f3d69b7af7312266648b7d1d5
BLAKE2b-256 92a684ae5b255c0c3f178c2f58c2e4104ecb2dd260d68204fe3f231f8afb63db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page