Skip to main content

ProSem - Probing and Classifying Semantic Spans

Project description

CLTrier ProSem

Usage

from cltrier_prosem import Pipeline

# init pipeline object (load model, data, trainer)
pipeline = Pipeline({
    'encoder': {
        'model': 'deepset/gbert-base',  # huggingface model slug 
    },
    'dataset': {
        'path': './path/data',  # path to data directory (containing train/test.parquet)
        'text_column': 'text',  # column containing src text
        'label_column': 'label',  # column containing target label
        'label_classes': ['class_1', 'class_2'],  # list of target classes
    },
    'classifier': {
        'hid_size': 512,  # size of classifier perceptron
        'dropout': 0.2,  # dropout value
    },
    'pooler': {
        'form': 'cls',
        # type of pooling, possible values: 
        # 'cls', 'sent_mean', 'subword_{first|last|mean|min|max}'
        # if subword probing used
        'span_columns': ['span']
    },
    'trainer': {
        'num_epochs': 5,  # number of training epochs
        'batch_size': 32,  # batch size in both training and evaluation
        'learning_rate': 1e-3,  # trainer learning rate
        'export_path': './path/output',  # output path for logging and results
    },
})

# call pipeline object (training and evaluation)
pipeline()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cltrier_prosem-0.4.3.tar.gz (2.5 MB view hashes)

Uploaded Source

Built Distribution

cltrier_prosem-0.4.3-py3-none-any.whl (15.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page