Skip to main content

ProSem - Probing and Classifying Semantic Spans

Project description

CLTrier ProSem

Usage

from cltrier_prosem import Pipeline

# init pipeline object (load model, data, trainer)
pipeline = Pipeline({
    'encoder': {
        'model': 'deepset/gbert-base',  # huggingface model slug 
    },
    'dataset': {
        'path': './path/data',  # path to data directory (containing train/test.parquet)
        'text_column': 'text',  # column containing src text
        'label_column': 'label',  # column containing target label
        'label_classes': ['class_1', 'class_2'],  # list of target classes
    },
    'classifier': {
        'hid_size': 512,  # size of classifier perceptron
        'dropout': 0.2,  # dropout value
    },
    'pooler': {
        'form': 'cls',
        # type of pooling, possible values: 
        # 'cls', 'sent_mean', 'subword_{first|last|mean|min|max}'
        # if subword probing used
        'span_columns': ['span']
    },
    'trainer': {
        'num_epochs': 5,  # number of training epochs
        'batch_size': 32,  # batch size in both training and evaluation
        'learning_rate': 1e-3,  # trainer learning rate
        'export_path': './path/output',  # output path for logging and results
    },
})

# call pipeline object (training and evaluation)
pipeline()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cltrier_prosem-0.4.1.tar.gz (13.1 MB view details)

Uploaded Source

Built Distribution

cltrier_prosem-0.4.1-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file cltrier_prosem-0.4.1.tar.gz.

File metadata

  • Download URL: cltrier_prosem-0.4.1.tar.gz
  • Upload date:
  • Size: 13.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for cltrier_prosem-0.4.1.tar.gz
Algorithm Hash digest
SHA256 75f0fae321e0a1088dae012c650d13d7e6581320d8c32d5a657a0e6f9c2690c8
MD5 ebdf825857a29c3550ca27ea49ee8709
BLAKE2b-256 836b032b6410e2060f9853401f6823884f143d49234b0c361f1280d0487be4ce

See more details on using hashes here.

Provenance

File details

Details for the file cltrier_prosem-0.4.1-py3-none-any.whl.

File metadata

File hashes

Hashes for cltrier_prosem-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1586e07816b987a47a60465b58ff9015caa2e13a333ff2f2f04163d40d0fe35a
MD5 78a853ce5828a90a59c10f6d2a4a3fc9
BLAKE2b-256 c0eef8f8b1c56fb6a2126a3faccc0f3114261bf159ad2aea21c22406f9ee0142

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page