Skip to main content

ProSem - Probing and Classifying Semantic Spans

Project description

CLTrier ProSem

Usage

from cltrier_prosem import Pipeline

# init pipeline object (load model, data, trainer)
pipeline = Pipeline({
    'encoder': {
        'model': 'deepset/gbert-base',  # huggingface model slug 
    },
    'dataset': {
        'path': './path/data',  # path to data directory (containing train/test.parquet)
        'text_column': 'text',  # column containing src text
        'label_column': 'label',  # column containing target label
        'label_classes': ['class_1', 'class_2'],  # list of target classes
    },
    'classifier': {
        'hid_size': 512,  # size of classifier perceptron
        'dropout': 0.2,  # dropout value
    },
    'pooler': {
        'form': 'cls',
        # type of pooling, possible values: 
        # 'cls', 'sent_mean', 'subword_{first|last|mean|min|max}'
        # if subword probing used
        'span_columns': ['span']
    },
    'trainer': {
        'num_epochs': 5,  # number of training epochs
        'batch_size': 32,  # batch size in both training and evaluation
        'learning_rate': 1e-3,  # trainer learning rate
        'export_path': './path/output',  # output path for logging and results
    },
})

# call pipeline object (training and evaluation)
pipeline()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cltrier_prosem-0.4.2.tar.gz (13.1 MB view details)

Uploaded Source

Built Distribution

cltrier_prosem-0.4.2-py3-none-any.whl (15.7 kB view details)

Uploaded Python 3

File details

Details for the file cltrier_prosem-0.4.2.tar.gz.

File metadata

  • Download URL: cltrier_prosem-0.4.2.tar.gz
  • Upload date:
  • Size: 13.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for cltrier_prosem-0.4.2.tar.gz
Algorithm Hash digest
SHA256 2608b3e51e68a086d8bb1267dcc43688930c0006559b5a7b692e3c1e19586062
MD5 e6f31bfb2fbba2f21ef2edf330703640
BLAKE2b-256 f1e818442e17344e4ef60c7229fbc5b3fe1bffe8286a549440053465302f1694

See more details on using hashes here.

Provenance

File details

Details for the file cltrier_prosem-0.4.2-py3-none-any.whl.

File metadata

File hashes

Hashes for cltrier_prosem-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 e8e186b156aff00e12fe58cfc91413dc039c0b367504b80cfdec3af932dbc9f4
MD5 0cdb94c822c2f93d378f7688a55c5282
BLAKE2b-256 d1df599626f380428dd2ff1cded98e7ce52e2700720181c32b6980a63ef99e72

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page